Spaces of analytic functions of prescribed growth near the boundary
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 263-281

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be an arbitrary bounded convex domain in the plane $\mathbf C$. For a certain sequence of convex functions $\varphi=\{\varphi_j\}_{j=1}^\infty$, $\varphi_j(z)\geqslant\varphi_{j+1}(z)$, given on $D$ the space $H_\varphi (D)$ is constructed as the projective limit of the normed spaces $$ H_j(D)=\{f(z)\in H(D):\|f\|_j=\sup_D|f(z)|\exp{(-\varphi_j(z))}\infty\},\qquad j=1,2,\dots, $$ where $H(D)$ is the space of analytic functions on $D$. The space $H_\varphi^*(D)$ is described in terms of Laplace transforms. A special role in this description is played by a generalization, proved in the article, of the Paley–Wiener theorem to the case of spaces of infinitely differentiable functions with prescribed growth near the boundary. The result is used in questions involving expansions of functions in Dirichlet series. Figures: 1. Bibliography: 17 titles.
@article{IM2_1988_30_2_a3,
     author = {V. V. Napalkov},
     title = {Spaces of analytic functions of prescribed growth near the boundary},
     journal = {Izvestiya. Mathematics },
     pages = {263--281},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a3/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Spaces of analytic functions of prescribed growth near the boundary
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 263
EP  - 281
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a3/
LA  - en
ID  - IM2_1988_30_2_a3
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Spaces of analytic functions of prescribed growth near the boundary
%J Izvestiya. Mathematics 
%D 1988
%P 263-281
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a3/
%G en
%F IM2_1988_30_2_a3
V. V. Napalkov. Spaces of analytic functions of prescribed growth near the boundary. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 263-281. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a3/