Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 403-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, (Liouville) integrability of geodesic flows on non-simply-connected manifolds is studied. In particular, the following result is obtained: A geodesic flow on a real-analytic Riemannian manifold cannot be integrable in terms of analytic functions if either 1) the fundamental group of the manifold contains no commutative subgroup of finite index, or 2) the first Betti number of the manifold over the field of rational numbers is greater than the dimension (the manifold is assumed to be closed). Bibliography: 11 titles.
@article{IM2_1988_30_2_a12,
     author = {I. A. Taimanov},
     title = {Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {403--409},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 403
EP  - 409
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/
LA  - en
ID  - IM2_1988_30_2_a12
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds
%J Izvestiya. Mathematics 
%D 1988
%P 403-409
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/
%G en
%F IM2_1988_30_2_a12
I. A. Taimanov. Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 403-409. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, Uspekhi matem. nauk, 37:5 (1982), 3–49 | MR | Zbl

[3] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:I (1983), 3–67 | MR | Zbl

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[5] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, Dokl. AN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[6] Kolokoltsov V. Ya., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR

[7] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozheniya, 12:2 (1978), 46–56 | MR | Zbl

[8] Preissmann A., “Quelques proprietes global des espaces de Rieman”, Comment. Math. Helv., 15 (1943), 175–216 | DOI | MR

[9] Lojasiewicz S., “Triangulation of semi-analytic sets”, Annali della Scuola Normale Superiore di Pisa, serie III, XVIII (1964), 449–474 | MR

[10] Gabrielov A. M., “O proektsiyakh poluanaliticheskikh mnozhestv”, Funkts. analiz i ego prilozheniya, 2:4 (1968), 18–30 | MR | Zbl

[11] Palamodov V. Ya., “Ob ustoichivosti ravnovesiya v potentsialnom pole”, Funkts. analiz i ego prilozheniya, 11:4 (1977), 42–55 | MR | Zbl