Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 403-409
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, (Liouville) integrability of geodesic flows on non-simply-connected manifolds is studied. In particular, the following result is obtained: A geodesic flow on a real-analytic Riemannian manifold cannot be integrable in terms of analytic functions if either 1) the fundamental group of the manifold contains no commutative subgroup of finite index, or 2) the first Betti number of the manifold over the field of rational numbers is greater than the dimension (the manifold is assumed to be closed).
Bibliography: 11 titles.
@article{IM2_1988_30_2_a12,
author = {I. A. Taimanov},
title = {Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds},
journal = {Izvestiya. Mathematics },
pages = {403--409},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/}
}
TY - JOUR AU - I. A. Taimanov TI - Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds JO - Izvestiya. Mathematics PY - 1988 SP - 403 EP - 409 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/ LA - en ID - IM2_1988_30_2_a12 ER -
I. A. Taimanov. Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 403-409. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a12/