Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 395-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any entire function $f$ of finite nonzero order there is a set $S$ in the plane with density zero and such that for any $a\in\mathbf C$ almost all the roots of the equation $f(z)=a$ belong to $S$. This assertion was deduced by Littlewood from an unproved conjecture about an estimate of the spherical derivative of a polynomial. This conjecture is proved here in a weakened form. Bibliography: 11 titles.
@article{IM2_1988_30_2_a11,
     author = {A. \`E. Eremenko and M. L. Sodin},
     title = {Proof of a~conditional theorem of {Littlewood} on the distribution of values of entire functions},
     journal = {Izvestiya. Mathematics },
     pages = {395--402},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/}
}
TY  - JOUR
AU  - A. È. Eremenko
AU  - M. L. Sodin
TI  - Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 395
EP  - 402
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/
LA  - en
ID  - IM2_1988_30_2_a11
ER  - 
%0 Journal Article
%A A. È. Eremenko
%A M. L. Sodin
%T Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
%J Izvestiya. Mathematics 
%D 1988
%P 395-402
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/
%G en
%F IM2_1988_30_2_a11
A. È. Eremenko; M. L. Sodin. Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 395-402. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/

[1] Littlewood J., “On some conjectural inequalities with applications to the theory of integral functions”, J. London Math. Soc., 27:4 (1952), 387–392 | DOI | MR

[2] Hayman W. K., “On a conjecture of Littlewood”, J. d'Analyse Math., 36 (1979), 75–95 | DOI | MR | Zbl

[3] Gusman M., Differentsirovanie integralov v $\mathbf{R}^n$, Mir, M., 1978 | MR

[4] Oksendal B., “Null sets for measures orthogonal to $R(x)$”, Amer. J. Math., 94:2 (1972), 331–342 | DOI | MR

[5] Oksendal B., “Brownian motion and sets of harmonic measure zero”, Pacific. J. Math., 95 (1981), 179–192 | MR

[6] Makarov N. G., “Opredelyayuschie podmnozhestva, nositel garmonicheskoi mery i vozmuschenie spektra operatorov v gilbertovom prostranstve”, Dokl. AN SSSR, 247:5 (1984), 1033–1037 | MR

[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[8] Azarin V. S., Teoriya rosta subgarmonicheskikh funktsii. I: Tekst lektsii, KhGU, Kharkov, 1978

[9] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[10] Goldberg A. A., Zabolotskii N. V., “Indeks kontsentratsii subgarmonicheskoi funktsii nulevogo poryadka”, Matem. zametki, 34:2 (1983), 227–236 | MR

[11] Littlewood J., “On exceptional values of power series”, J. London Math. Soc., 5 (1930), 82–87 | DOI | Zbl