Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 395-402

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any entire function $f$ of finite nonzero order there is a set $S$ in the plane with density zero and such that for any $a\in\mathbf C$ almost all the roots of the equation $f(z)=a$ belong to $S$. This assertion was deduced by Littlewood from an unproved conjecture about an estimate of the spherical derivative of a polynomial. This conjecture is proved here in a weakened form. Bibliography: 11 titles.
@article{IM2_1988_30_2_a11,
     author = {A. \`E. Eremenko and M. L. Sodin},
     title = {Proof of a~conditional theorem of {Littlewood} on the distribution of values of entire functions},
     journal = {Izvestiya. Mathematics },
     pages = {395--402},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/}
}
TY  - JOUR
AU  - A. È. Eremenko
AU  - M. L. Sodin
TI  - Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 395
EP  - 402
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/
LA  - en
ID  - IM2_1988_30_2_a11
ER  - 
%0 Journal Article
%A A. È. Eremenko
%A M. L. Sodin
%T Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions
%J Izvestiya. Mathematics 
%D 1988
%P 395-402
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/
%G en
%F IM2_1988_30_2_a11
A. È. Eremenko; M. L. Sodin. Proof of a~conditional theorem of Littlewood on the distribution of values of entire functions. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 395-402. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a11/