On~unstable sets of evolution equations in the neighborhood of critical points of a~stationary curve
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 39-70
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations of the form $\partial_t u=A(u,\lambda)$ are considered, for example, parabolic and hyperbolic equations. It is proved that the change of the local unstable invariant manifolds of such equations is determined by the form of the stationary curve $(u,\lambda)=(U(\xi),\Lambda(\xi))$, $A(u,\lambda)=0$.
Bibliography: 9 titles.
@article{IM2_1988_30_1_a2,
author = {A. V. Babin and M. I. Vishik},
title = {On~unstable sets of evolution equations in the neighborhood of critical points of a~stationary curve},
journal = {Izvestiya. Mathematics },
pages = {39--70},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a2/}
}
TY - JOUR AU - A. V. Babin AU - M. I. Vishik TI - On~unstable sets of evolution equations in the neighborhood of critical points of a~stationary curve JO - Izvestiya. Mathematics PY - 1988 SP - 39 EP - 70 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a2/ LA - en ID - IM2_1988_30_1_a2 ER -
A. V. Babin; M. I. Vishik. On~unstable sets of evolution equations in the neighborhood of critical points of a~stationary curve. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 39-70. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a2/