On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 15-38
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a flow on a surface $M$ of nonpositive Euler characteristic whose set of equilibrium points can be deformed, in $M$, to a point (this, for example, is the case if there are only finitely many equilibrium points). For such a flow, it is proved that the semitrajectory of the covering flow on the universal cover (the Euclidean or Lobachevsky plane) of $M$ is either bounded or tends to infinity in a definite direction. For analytic flows (but not for $C^\infty$-flows), this conclusion holds without any conditions on the equilibrium points.
Bibliography: 21 titles.
@article{IM2_1988_30_1_a1,
author = {D. V. Anosov},
title = {On the behavior in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~I}},
journal = {Izvestiya. Mathematics },
pages = {15--38},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/}
}
TY - JOUR AU - D. V. Anosov TI - On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I JO - Izvestiya. Mathematics PY - 1988 SP - 15 EP - 38 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/ LA - en ID - IM2_1988_30_1_a1 ER -
%0 Journal Article %A D. V. Anosov %T On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I %J Izvestiya. Mathematics %D 1988 %P 15-38 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/ %G en %F IM2_1988_30_1_a1
D. V. Anosov. On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/