On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I
Izvestiya. Mathematics, Tome 30 (1988) no. 1, pp. 15-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a flow on a surface $M$ of nonpositive Euler characteristic whose set of equilibrium points can be deformed, in $M$, to a point (this, for example, is the case if there are only finitely many equilibrium points). For such a flow, it is proved that the semitrajectory of the covering flow on the universal cover (the Euclidean or Lobachevsky plane) of $M$ is either bounded or tends to infinity in a definite direction. For analytic flows (but not for $C^\infty$-flows), this conclusion holds without any conditions on the equilibrium points. Bibliography: 21 titles.
@article{IM2_1988_30_1_a1,
     author = {D. V. Anosov},
     title = {On the behavior in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~I}},
     journal = {Izvestiya. Mathematics},
     pages = {15--38},
     year = {1988},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I
JO  - Izvestiya. Mathematics
PY  - 1988
SP  - 15
EP  - 38
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/
LA  - en
ID  - IM2_1988_30_1_a1
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I
%J Izvestiya. Mathematics
%D 1988
%P 15-38
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/
%G en
%F IM2_1988_30_1_a1
D. V. Anosov. On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I. Izvestiya. Mathematics, Tome 30 (1988) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/

[1] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M., L., 1949, 550 pp.

[2] Lyusternik L. A., Shnirelman L. G., “Topologicheskie metody v variatsionnykh zadachakh i ikh prilozheniya k differentsialnoi geometrii poverkhnostei”, Uspekhi matem. nauk, 2:1 (1947), 166–217 | MR

[3] Aranson S. Kh., Grines V. Z., “Potoki na dvumernykh mnogoobraziyakh”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 229–240

[4] Aranson S. X., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, Uspekhi matem. nauk, 41:1 (1986), 149–170 | MR

[5] Vershik A. M., Kornfeld I. P., “Periodicheskie approksimatsii i ikh prilozheniya. Ergodicheskie teoremy, spektralnaya i entropiinaya teoriya dlya deistvii obschikh grupp”, Dinamicheskie sistemy – 2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 70–89

[6] Weil A., “On systems of curves on a ring-shaped surface”, J. Indian Math. Soc., 19:5 (1931), 109–112 ; 6, 113–114 | Zbl | Zbl

[7] Weil A., “Les families de courbes sur le tore”, Matem. sb., 1:5 (1936), 779–781 | Zbl

[8] Kneseer H., “Reguläre Kurvenscharen auf den Ringflächen”, Math. Ann., 91:1,2 (1923), 135–154 | DOI | MR

[9] Tamura I., Topologiya sloenii, Mir, M., 1979, 320 pp. | MR | Zbl

[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl

[11] Maltsev A. A., Polyakov V. Z., “Simpozium po obschei topologii”, Uspekhi matem. nauk, 21:4 (1966), 279–282

[12] Pupko V. I., “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, Dokl. AN SSSR, 177:2 (1967), 272–274 | MR | Zbl

[13] Aranson S. X., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh sistem)”, Matem. sb., 90:3 (1973), 372–402 | MR | Zbl

[14] Maier A. T., “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12:1 (1943), 71–84 | MR

[15] Cherry T. M., “Analytic quasi-periodic curves of discontinuous type on a torus”, Proc. Lond. Math. Soc. Ser. 2, 44:2 (1938), 175–215 | DOI | Zbl

[16] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986, 296 pp. | MR

[17] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970, 412 pp. | MR | Zbl

[18] Whitney H., “Regular families of curves”, Ann. Math., 34:1,2 (1933), 244–270 | DOI | MR | Zbl

[19] Nemytskii V. V., “Struktura odnomernykh predelnykh integralnykh mnogoobrazii na ploskosti i v trekhmernom prostranstve”, Vestnik MGU, 1948, no. 10, 49–61

[20] Khausdorf F., Teoriya mnozhestv, Gostekhizdat, M., L., 1937, 304 pp.

[21] Zigel K. A., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954, 167 pp.