On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 15-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a flow on a surface $M$ of nonpositive Euler characteristic whose set of equilibrium points can be deformed, in $M$, to a point (this, for example, is the case if there are only finitely many equilibrium points). For such a flow, it is proved that the semitrajectory of the covering flow on the universal cover (the Euclidean or Lobachevsky plane) of $M$ is either bounded or tends to infinity in a definite direction. For analytic flows (but not for $C^\infty$-flows), this conclusion holds without any conditions on the equilibrium points. Bibliography: 21 titles.
@article{IM2_1988_30_1_a1,
     author = {D. V. Anosov},
     title = {On the behavior in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {15--38},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 15
EP  - 38
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/
LA  - en
ID  - IM2_1988_30_1_a1
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I
%J Izvestiya. Mathematics 
%D 1988
%P 15-38
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/
%G en
%F IM2_1988_30_1_a1
D. V. Anosov. On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a1/