On~approximation of functions by harmonic polynomials
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 1-13

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain finite continua $\mathfrak M\subset\mathbf R^2$ with simply connected complements $\Omega=C\mathfrak M$, the direct problem of using harmonic polynomials to approximate realvalued functions continuous on $\mathfrak M$, harmonic on its interior, and having a specified majorant for their moduli of continuity is solved. As in the case of approximation of functions continuous on $\mathfrak M$ and analytic in $\mathring{\mathfrak M}$ by analytic polynomials, the estimates obtained depend on the distance from the boundary points of $\mathfrak M$ to the level curves of the function mapping $\Omega$ conformally onto the exterior of the unit disk with the standard normalization at $\infty$. Bibliography: 25 titles.
@article{IM2_1988_30_1_a0,
     author = {V. V. Andrievskii},
     title = {On~approximation of functions by harmonic polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {1--13},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a0/}
}
TY  - JOUR
AU  - V. V. Andrievskii
TI  - On~approximation of functions by harmonic polynomials
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 1
EP  - 13
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a0/
LA  - en
ID  - IM2_1988_30_1_a0
ER  - 
%0 Journal Article
%A V. V. Andrievskii
%T On~approximation of functions by harmonic polynomials
%J Izvestiya. Mathematics 
%D 1988
%P 1-13
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a0/
%G en
%F IM2_1988_30_1_a0
V. V. Andrievskii. On~approximation of functions by harmonic polynomials. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a0/