The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 629-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

The surfaces of constant energy in integrable Hamiltonian systems which possess Bott integrals are classified. A complete topological classification is given of surgery of Liouville tori in general position in integrable Hamiltonian systems. Bibliography: 28 titles.
@article{IM2_1987_29_3_a6,
     author = {A. T. Fomenko},
     title = {The topology of surfaces of constant energy in integrable {Hamiltonian} systems, and obstructions to integrability},
     journal = {Izvestiya. Mathematics },
     pages = {629--658},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a6/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 629
EP  - 658
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a6/
LA  - en
ID  - IM2_1987_29_3_a6
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability
%J Izvestiya. Mathematics 
%D 1987
%P 629-658
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a6/
%G en
%F IM2_1987_29_3_a6
A. T. Fomenko. The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 629-658. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a6/

[1] Anosov D. V., “O tipichnykh svoistvakh zamknutykh geodezicheskikh”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 675–709 | MR | Zbl

[2] Anosov D. V., “Zamknutye geodezicheskie”, Kachestvennye metody issledovaniya nelineinykh differentsialnykh uravnenii i nelineinykh kolebanii, In-t matematiki AN USSR, Kiev, 1981, 5–24 | MR

[3] Anosov D. V., “Nekotorye gomologii v prostranstve zamknutykh krivykh na $n$-mernoi sfere”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 467–490 | MR | Zbl

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[5] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno periodicheskikh dvizhenii pri malom vozmuschenii funktsii Gamiltona”, Uspekhi matem. nauk, 18:5 (1963), 13–40 | MR

[6] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:1 (1983), 3–67 | MR | Zbl

[7] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980 | MR

[8] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR Ser. matem., 46:5 (1982), 994–1010 | MR

[9] Stepin A. M., “Integriruemye gamiltonovy sistemy. I. Metody integrirovaniya gamiltonovykh sistem. II. Serii integriruemykh sistem”, Kachestvennye metody issledovaniya nelineinykh differentsialnykh uravnenii i nelineinykh kolebanii, In-t matematiki AN USSR, Kiev, 1981, 116–170 | MR

[10] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravneniya Kirkhgofa svobodnogo dvizheniya tverdogo tela v idealnoi zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LMSh). I”, Funkts. analiz i ego prilozh., 15:3 (1982), 54–66 | MR | Zbl

[11] Novikov S. P., “Variatsionnye metody i periodicheskie resheniya uravnenii tipa Kirkhgofa. II”, Funkts. analiz i ego prilozh., 15:4 (1981), 37–52 | MR

[12] Bolotin S. V., “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestnik MGU, ser. matem., mekh., 1984, no. 3, 65–68 | MR

[13] Kozlov V. V., “Variatsionnoe ischislenie v tselom i klassicheskaya mekhanika”, Uspekhi matem. nauk, 40:2 (1985), 33–60 | MR | Zbl

[14] Fomenko A. T., “Algebraic Structure of Certain Integrable Hamiltonian Systems”, Global Analysis-Studies and Applications. I, Lecture Notes in Math., 1108, 1984, 103–127 | MR | Zbl

[15] Pogosyan T. I., Kharlamov M. P., “Bifurkatsionnoe mnozhestvo i integralnye mnogoobraziya zadachi o dvizhenii tverdogo tela v lineinom pole sil”, Prikl. matem. i mekh., 43:3 (1979), 419–428 | MR | Zbl

[16] Klingenberg V., Lektsii o zamknutykh geodezicheskikh, Mir, M., 1982 | MR | Zbl

[17] Tatarinov Ya. V., “Portrety klassicheskikh integralov zadachi o vraschenii tverdogo tela vokrug nepodvizhnoi tochki”, Vestnik MGU, ser. matem., mekhan., 1974, no. 6, 99–105 | MR | Zbl

[18] Trofimov V. V., Fomenko A. G., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, Uspekhi matem. nauk, 39:2 (1984), 3–56 | MR | Zbl

[19] Bott R., “Non-degenerate critical manifolds”, Ann. of Math., 60 (1954), 248–261 | DOI | MR | Zbl

[20] Adler N., van Moerbeke P., “The algebraic integrability of geodesic flow on $SO(4)$”, Invent. Math., 67 (1982), 297–331 | DOI | MR | Zbl

[21] Fomenko A. T., “The integrability of some hamiltonian systems”, Ann. of global analysis and geometry, 1:2 (1983), 1–10 | DOI | MR | Zbl

[22] Fomenko A. T., “Algebraic properties of some integrable hamiltonian systems”, Lecture Notes in Math., 1060, 1984, 246–257 | MR | Zbl

[23] Conley C., Zehnder E., “Morse-type index theory for flows and periodic solutions for Hamiltonian equations”, Comm. Pure Appl. Math., 37:2 (1984), 207–255 | DOI | MR

[24] Waldhausen F., “Eine Klasse von 3-dimensional Mannigfaltigkeiten. I”, Invent. Math., 3:4 (1967), 308–333 | DOI | MR | Zbl

[25] Smeil S., “Topologiya k mekhanika”, Uspekhi matem. nauk, 27:2 (1972), 77–123 | MR | Zbl

[26] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, Dokl. AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[27] Fomenko A. T., “Topologiya trekhmernykh mnogoobrazii i integriruemye mekhanicheskie gamiltonovy sistemy”, V Tiraspolskii simpozium po obschei topologii i ee prilozheniyam, Kishinev, 1985, 235–237

[28] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl