Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 511-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Sapondzhyan–Babuska paradox consists in the fact that, when thin circular plates are approximated by regular polygons with freely supported edges, the limit solution does not satisfy the conditions of free support on the circle. In this article, new effects of the same nature are found. In particular, plates with convex holes are considered. Here, in contrast to the case of convex plates, the boundary conditions on the polygon are not preserved in the limit. Methods of approximating a smooth contour leading to passage to the limit from conditions of free support to conditions of rigid support are discussed. Bibliography: 20 titles.
@article{IM2_1987_29_3_a1,
     author = {V. G. Maz'ya and S. A. Nazarov},
     title = {Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains},
     journal = {Izvestiya. Mathematics },
     pages = {511--533},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a1/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - S. A. Nazarov
TI  - Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 511
EP  - 533
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a1/
LA  - en
ID  - IM2_1987_29_3_a1
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A S. A. Nazarov
%T Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains
%J Izvestiya. Mathematics 
%D 1987
%P 511-533
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a1/
%G en
%F IM2_1987_29_3_a1
V. G. Maz'ya; S. A. Nazarov. Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 511-533. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a1/

[1] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi matem. nauk, 1941, no. 8, 171–231 | MR | Zbl

[2] Kurant R., Gilbert D., Metody matematicheskoi fiziki, t. II, Gostekhizdat, M., 1951, 544 pp.

[3] Deny J., Lions J.-L., “Les espaces du type de Beppo Levi”, Ann. Inst. Fourier, 5 (1953–54), 305–370 | MR

[4] Babushka I., “Ustoichivost oblasti opredeleniya po otnosheniyu k vozmuscheniyu granitsy osnovnykh zadach teorii differentsialnykh uravnenii v chastnykh proizvodnykh, glavnym obrazom v svyazi s teoriei uprugosti. 1”, Chekhoslovatskii matem. zhurnal, 11:1 (1961), 76–105 | Zbl

[5] Sapondzhyan O. M., “Izgib svobodno opertoi poligonalnoi plity”, Izv. AN Arm. SSR, 5:2 (1952), 29–46 | Zbl

[6] Sapondzhyan O. M., Izgib tonkikh uprugikh plit, Aiastan, Erevan, 1975, 436 pp.

[7] Rajaiah K., Rao A. K., “Effect of Boundary Conditions Description on Convergence of Solution in a Boundary–Value Problem”, Journal of Computational Physics, 3:2 (1968), 190–201 | DOI | Zbl

[8] Hanuška A., “Zu den Thorien der Plattenbiegung”, Beton-und-Stahlbetonbau, 9 (1969), 214–217

[9] Rieder G., “Eingrenzungen in der Elastizitäts-und Potentialtheorie”, ZAMM, 52:10 (1972), 340–347 | MR

[10] Murray N. W., “The Polygone-Circle Paradox and Convergence in Thin Plate Theory”, Proceedings of the Cambridge Philosophical Society, 73 (1973), 279–283 | DOI

[11] Rieder G., “On the Plate Paradox of Sapondzhyan and Babuška”, Mech. Res. Comm., 1 (1974), 51–53 | DOI

[12] Rajaiah K., Rao A. K., “On the Polygone-Circle Paradox”, Journal of Applied Mechanics, 48 (1981), 195–196

[13] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North' Holland Publ. Co., Amsterdam, 1978, 386 pp. | MR

[14] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-cxodimost differentsialnykh operatorov”, Uspekhi matem. nauk, 34:5 (1979), 65–133 | MR | Zbl

[15] Iosifyan G. A., Oleinik O. A., Panasenko G. P., “Asimptoticheskoe razlozhenie resheniya sistemy teorii uprugosti s bystroostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 266:1 (1982), 18–22 | MR

[16] Bakhvalov N. S, Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[17] Mazya V. G., Nazarov S. A., “O paradokse Sapondzhyana–Babushki v zadachakh teorii tonkikh plastin”, Dokl. AN ArmSSR, 78:3 (1984), 127–130

[18] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[19] Birman M. Sh., “Variatsionnye metody resheniya kraevykh zadach, analogichnye metodu Trefttsa”, Vestnik LGU, 1956, no. 13, 69–89 | MR | Zbl

[20] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985, 415 pp. | MR