The complexity of the decision problem for the first order theory of algebraically closed fields
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 459-475

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm is described that constructs, from every formula of the first order theory of algebraically closed fields, an equivalent quantifier-free formula in time which is polynomial in $\mathscr L^{n^{2a+1}}$, where $\mathscr L$ is the size of the formula, $n$ is the number of variables, and $a$ is the number of changes of quantifiers. Bibliography: 15 titles.
@article{IM2_1987_29_2_a9,
     author = {D. Yu. Grigor'ev},
     title = {The complexity of the decision problem for the first order theory of algebraically closed fields},
     journal = {Izvestiya. Mathematics },
     pages = {459--475},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a9/}
}
TY  - JOUR
AU  - D. Yu. Grigor'ev
TI  - The complexity of the decision problem for the first order theory of algebraically closed fields
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 459
EP  - 475
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a9/
LA  - en
ID  - IM2_1987_29_2_a9
ER  - 
%0 Journal Article
%A D. Yu. Grigor'ev
%T The complexity of the decision problem for the first order theory of algebraically closed fields
%J Izvestiya. Mathematics 
%D 1987
%P 459-475
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a9/
%G en
%F IM2_1987_29_2_a9
D. Yu. Grigor'ev. The complexity of the decision problem for the first order theory of algebraically closed fields. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 459-475. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a9/