An estimate of the number of terms in Waring's problem for polynomials of general form
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 371-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp upper bound is established for the smallest $s$ for which the equation $f(x_1)+\dots+f(x_s)=N$ is solvable in nonnegative integers $x_1,\dots,x_s$ for any fixed integer-valued polynomial $f(x)=a_n\binom xn+\dots+a_1\binom x1$ with $(a_n,\dots,a_1)=1$ and $a_n>0$ for all natural $N\geqslant N_0(f)$. Bibliography: 44 titles.
@article{IM2_1987_29_2_a5,
     author = {D. A. Mit'kin},
     title = {An estimate of the number of terms in {Waring's} problem for polynomials of general form},
     journal = {Izvestiya. Mathematics },
     pages = {371--406},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a5/}
}
TY  - JOUR
AU  - D. A. Mit'kin
TI  - An estimate of the number of terms in Waring's problem for polynomials of general form
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 371
EP  - 406
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a5/
LA  - en
ID  - IM2_1987_29_2_a5
ER  - 
%0 Journal Article
%A D. A. Mit'kin
%T An estimate of the number of terms in Waring's problem for polynomials of general form
%J Izvestiya. Mathematics 
%D 1987
%P 371-406
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a5/
%G en
%F IM2_1987_29_2_a5
D. A. Mit'kin. An estimate of the number of terms in Waring's problem for polynomials of general form. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 371-406. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a5/

[1] Arkhipov G. I., Karatsuba A. A., “O lokalnom predstavlenii nulya formoi”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 948–961 | MR | Zbl

[2] Arkhipov G. I., “O znachenii osobogo ryada v probleme Gilberta–Kamke”, Dokl. AN SSSR, 259:2 (1981), 265–267 | MR | Zbl

[3] Arkhipov G. I., “O probleme Gilberta–Kamke”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 3–52 | MR | Zbl

[4] Waring E., Meditationes Algebraicae, Cantabrigiae, 1770

[5] Dickson L. E., History of theory of numbers, v. II, Washington, 1920

[6] Maillet E., “Quelques extensions du theoreme de Fermat sur les nombres polygones”, J. de Mathem. pures et appl. (5), 2 (1896), 363–380 | Zbl

[7] Hilbert D., “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n$-ter Potenzen (Waringsches Problem)”, Math. Ann., 67 (1909), 281–300 | DOI | MR | Zbl

[8] Kamke E., “Verailgemeinerungen des Waring–Hillbertschen Satzes”, Math. Ann., 83 (1921), 85–112 | DOI | MR | Zbl

[9] Kamke E., “Über die Zerfällung rationaler Zahlen in rationale Polynomwerte”, Math. Zeit., 12 (1922), 323–328 | DOI | MR | Zbl

[10] Kamke E., “Bemerkung zum allgemeinen Waringschen Problem”, Math. Zeit., 15 (1922), 188–194 | DOI | MR | Zbl

[11] Hardy G. H., Littlewood J. E., “A new solution of Waring's problem”, Quart. J. of pure and appl. Math., 48 (1920), 272–293

[12] Hardy G. H., Littlewood J. E., “Some problems of Partitio Numerorum. IV. The singular series in Waring's problem and the value of the number $G(k)$”, Math. Zeit., 12 (1922), 161–188 | DOI | MR | Zbl

[13] Hardy G. H., Littlewood J. E., “Some problems of Partitio Numerorum. VI. Further researches in Waring's Problem”, Math. Zeit., 23 (1925), 1–37 | DOI | MR | Zbl

[14] Hardy G. H., Littlewood J. E., “Some problems of Partitio Numerorum. VIII. The number $\Gamma(k)$ in Waring's problem”, Proc. London Math. Soc. (2), 28 (1928), 518–542 | DOI | MR | Zbl

[15] Vinogradov I. M., Novyi metod v analiticheskoi teorii chisel, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 10, 1938 | Zbl

[16] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 23, 1947 | MR | Zbl

[17] Vinogradov I. M., Metod trigonometoicheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[18] Hua L.-K., “On Waring's problem”, Quart. J. of Math., 9 (1938), 199–202 | DOI | MR | Zbl

[19] Hua L.-K., “On a generalized Warings problem. II”, J. of the Chinese Math. Soc., 2:2 (1940), 175–191 | MR | Zbl

[20] Hua Loo-Keng, Additive Primzahlentheorie, Feubner, Leipzig, 1959

[21] Xya Lo-Ken, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964 | MR

[22] Pillai S. S., “On Waring's problem. VI. Polynominal summands”, J. Annamalai Univ., 6 (1937), 171–197 | Zbl

[23] Pall D. G., “Large numbers are sums of four or five values of a quadratie function of $x$”, Bull. Amer. Math. Soc., 36:11 (1930), 802 | Zbl

[24] Nechaev V. I., Telesin Yu. Z., “O tochnom znachenii $G(f,a)$ dlya posledovatelnostei mnogochlenov vtoroi stepeni”, Uchenye zapiski Mosk. gos. ped. in-ta im. V. I. Lenina, 1963, no. 188, 131–138

[25] Hua L.-K., “On Waring problem with cubic polynomial summands”, J. Indian Math. Soc. (N.S.), 4 (1940), 127–135 | MR

[26] Lu-King-Khua, “Nekotorye rezultaty v probleme Varinga dlya malykh stepenei”, Dokl. AN SSSR, 18:8 (1938), 527–528

[27] Nechaev V. I., “Problema Varinga dlya mnogochlenov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 38, 1951, 190–243 | Zbl

[28] Nechaev V. I., “Mnogochleny s malym $G(f)$”, Uchenye zapiski Mosk. gor. ped. in-ta im. V. P. Potemkina, t. 71, 1958, 291–300

[29] Telesin Yu., “Problema Varinga dlya mnogochlenov stepeni 7, 8, 9 i 10”, Uchenye zapiski Mosk. gor. ped. in-ta im. V. P. Potemkina, t. 71, 1958, 301–311

[30] Karatsuba A. A., “Problema Varinga dlya sravneniya po modulyu, ravnomu stepeni prostogo chisla”, Vestn. MGU, Ser. 1, 1962, no. 1, 28–38 | Zbl

[31] Karatsuba A. A., “Trigonometricheskie summy spetsialnogo vida i ikh prilozheniya”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 237–248 | Zbl

[32] Karatsuba A. A., “O sistemakh sravnenii”, Izv. AN SSSR. Ser. matem., 29:4 (1965), 935–944 | Zbl

[33] Karatsuba A. A., “Teoremy o srednem i polnye trigonometricheskie summy”, Izv. AN SSSR. Ser. matem., 30:1 (1966), 183–206 | MR | Zbl

[34] Karatsuba A. A., “Srednee znachenie modulya trigonometricheskoi summy”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1203–1227 | Zbl

[35] Arkhipov G. I., “Otsenki dvoinykh trigonometricheskikh summ G. Veilya”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 142, 1976, 46–66

[36] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Kratnye trigonometricheskie summy i ikh prilozheniya”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 723–781 | MR | Zbl

[37] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Kratnye trigonometricheskie summy”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 151, 1980, 1–128 | MR | Zbl

[38] Chubarikov V. N., “Ob asimptoticheskikh formulakh dlya integrala I. M. Vinogradova i ego obobschenii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 157, 1981, 214–232 | MR | Zbl

[39] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 204–207 | DOI | MR | Zbl

[40] Karatsuba A. A., “Ob odnoi sisteme sravnenii”, Matem. zametki, 19:3 (1976), 389–392 | MR | Zbl

[41] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[42] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[43] Nechaev V. I., “O predstavlenii naturalnykh chisel summoi slagaemykh vida $\dfrac{x(x+1)\dots(x+n-1)}{n!}$”, Izv. AN SSSR. Ser. mat., 17:6 (1953), 485–498 | MR | Zbl

[44] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR