On a~theorem of Hurewicz and $K$-theory of complete discrete valuation rings
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a complete discrete valuation ring $\mathfrak D$ of zero characteristic with residue field $k$ of positive characteristic $p$ and maximal ideal $\mathfrak M$, the natural homomorphism of $K$-groups with coefficients $$ K_i(\mathfrak D;\mathbf Z/p^n\mathbf Z)\to\varprojlim_iK_i(\mathfrak D/\mathfrak M^j;\mathbf Z/p^n\mathbf Z) $$ is an isomorphism for all positive $i$ and $n$. For the ring of integers $\mathfrak D$ in a local field $K/\mathbf Q_p$, the groups $K_i(\mathfrak D;\mathbf Z/p^n\mathbf Z)$ are finite. Bibliography: 13 titles.
@article{IM2_1987_29_1_a6,
     author = {I. A. Panin},
     title = {On a~theorem of {Hurewicz} and $K$-theory of complete discrete valuation rings},
     journal = {Izvestiya. Mathematics },
     pages = {119--131},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a6/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - On a~theorem of Hurewicz and $K$-theory of complete discrete valuation rings
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 119
EP  - 131
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a6/
LA  - en
ID  - IM2_1987_29_1_a6
ER  - 
%0 Journal Article
%A I. A. Panin
%T On a~theorem of Hurewicz and $K$-theory of complete discrete valuation rings
%J Izvestiya. Mathematics 
%D 1987
%P 119-131
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a6/
%G en
%F IM2_1987_29_1_a6
I. A. Panin. On a~theorem of Hurewicz and $K$-theory of complete discrete valuation rings. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a6/