Outer conjugacy of the actions of countable amenable groups on a~measure space
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following assertion is proved. Let $T$ be an automorphism of a Lebesgue space $(X,\mu)$, preserving the (finite or infinite) measure $\mu$, and let $U_i(G)$, $i=1,2$, be actions of a countable amenable group $G$ by automorphisms on $(X,\mu)$, such that $U_i(G)\subset N[T]$, where $N[T]$ is the normalizer of the full group $[T]$. For the existence of an automorphism $\theta\in N[T]$ such that $U_1(g)=\theta^{-1}U_2(g)t\theta$ (the outer conjugacy of the actions $U_1$ and $U_2$), where $t=t(g)\in[T]$, $g\in G$, it is necessary and sufficient that \begin{gather*} \{g\in G:U_1(g)\in[T]\}=\{g\in G:U_2(g)\in[T]\},\\ \frac{d\mu\circ U_1(g)}{d\mu}=\frac{d\mu\circ U_2(g)}{d\mu}\quad(g\in G). \end{gather*} The proof uses properties of cocycles of approximable groups of automorphisms. Bibliography: 25 titles.
@article{IM2_1987_29_1_a0,
     author = {S. I. Bezuglyi and V. Ya. Golodets},
     title = {Outer conjugacy of the actions of countable amenable groups on a~measure space},
     journal = {Izvestiya. Mathematics },
     pages = {1--18},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/}
}
TY  - JOUR
AU  - S. I. Bezuglyi
AU  - V. Ya. Golodets
TI  - Outer conjugacy of the actions of countable amenable groups on a~measure space
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 1
EP  - 18
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/
LA  - en
ID  - IM2_1987_29_1_a0
ER  - 
%0 Journal Article
%A S. I. Bezuglyi
%A V. Ya. Golodets
%T Outer conjugacy of the actions of countable amenable groups on a~measure space
%J Izvestiya. Mathematics 
%D 1987
%P 1-18
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/
%G en
%F IM2_1987_29_1_a0
S. I. Bezuglyi; V. Ya. Golodets. Outer conjugacy of the actions of countable amenable groups on a~measure space. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/

[1] Kolmogorov A. N., “Ob entropii na edinitsu vremeni, kak metricheskom invariante avtomorfizmov”, Dokl. AN SSSR, 124:4 (1959), 754–755 | MR | Zbl

[2] Sinai Ya. G., “O ponyatii entropii dinamicheskoi sistemy”, Dokl. AN SSSR, 124:4 (1959), 768–771 | MR | Zbl

[3] Ornstein D., Ergodicheskaya teoriya, sluchainost i dinamicheskie sistemy, Mir, M., 1978 | MR

[4] Connes A., Krieger W., “Measure space automorphisms, the normalizers of their full groups, and approximate finiteness”, Functional Analysis, 24 (1977), 336–352 | DOI | MR | Zbl

[5] Bezuglyi S. I., Golodets V. Ya., “Gruppy preobrazovanii prostranstva s meroi i invarianty vneshnei sopryazhennosti dlya avtomorfizmov iz normalizatora polnykh grupp tipa III”, Dokl. AN SSSR, 254:1 (1980), 11–14 | MR | Zbl

[6] Bezuglyi S. I., Golodets V. Ya., “Groups of measure space transformation and invariants of outer conjugation for automorphisms from normalizers of type III full groups”, Functional Analysis, 60 (1985), 341–369 | DOI | MR | Zbl

[7] Mackey G. W., “Ergodic theory and virtual groups”, Ann. Math., 166 (1966), 187–207 | DOI | MR | Zbl

[8] Zimmer R., “Amenable ergodic group actions and an application to Poisson boundaries of random walks”, Functional Analysis, 27 (1978), 350–372 | DOI | MR | Zbl

[9] Zimmer R., “Random walks on compact groups and the existence of cocycles”, Isr. J. Math., 26 (1977), 84–90 | DOI | MR | Zbl

[10] Zimmer R., “Cocycles and the structure of ergodic group action”, Isr. J. Math., 26 (1977), 214–220 | DOI | MR | Zbl

[11] Golodets V. Ya., Sinelschikov S. D., Suschestvovanie i edinstvennost kotsiklov ergodicheskogo avtomorfizma s plotnymi obrazami v amenabelnykh gruppakh, Preprint 19-83, FTINT AN USSR, Kharkov, 1983

[12] Bezuglyi S. I., Golodets V. Ya., Vneshnyaya sopryazhennost deistvii schetnykh amenabelnykh grupp na prostranstve s meroi, Preprint 2-84, FTINT AN USSR, Kharkov, 1984, 38 pp.

[13] Bezuglyi S. I., Golodets V. Ya., Preobrazovaniya tipa $\operatorname{III}_0$ i vneshnyaya sopryazhennost deistvii schetnykh amenabelnykh grupp, Preprint 28-85, FTINT AN USSR, Kharkov, 1985, 38 pp. | MR

[14] Golodets V. Ya, Sinelschikov S. D., Vneshnyaya sopryazhennost nepreryvnykh amenabelnykh grupp, Preprint 21-85, FTINT AN USSR, Kharkov, 1985, 26 pp. | MR

[15] Fedorov A. L., “O slabom zamykanii polnykh grupp avtomorfizmov”, Dokl. AN SSSR, 285:1 (1985), 49–52 | MR

[16] Rubshtein B. A., Fedorov A. A., O podgruppakh polnoi ergodicheskoi gruppy. II, dep. v UzNIINTI, No 186 Uz–D84, Tashkent, 1984, 25 pp.

[17] Rokhlin V. A., “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, Uspekhi matem. nauk, 4:2 (1949), 57–128 | MR | Zbl

[18] Hamachi T., Osikawa M., “Ergodic groups of automorphisms and Krieger's theorems”, Sem. Math. Sci. Keio Univ., 1981, no. 3, 1–113 | MR

[19] Connes A., Feldman J., Weiss B., “An amenable equivalence relation is generated by a single transformation”, Ergodic Theory and Dyn. Syst., 1:4 (1981), 431–450 | MR | Zbl

[20] Dye H. A., “On groups of measure preserving transformations. I”, Amer. J. Math., 81:1 (1959), 119–159 | DOI | MR | Zbl

[21] Krieger W., “On non-singular transformations of measure space. I. II”, Z. Wahrscheinlichkeitstreorie und verw. Geb., 11 (1969), 83–119 | DOI | MR | Zbl

[22] Belinskaya R. M., “Razbienie prostranstva Lebega na traektorii, opredelyaemye ergodicheskimi avtomorfizmami”, Funkts. analiz i ego prilozh., 2:3 (1968), 4–16 | MR

[23] Vershik A. M., “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. analiz i ego prilozh., 2:3 (1968), 17–21 | MR | Zbl

[24] Krieger W., “On ergodic flows and isomorphism of factors”, Math. Ann., 223 (1976), 19–70 | DOI | MR | Zbl

[25] Stepin A. M., “O kogomologiyakh grupp avtomorfizmov prostranstva Lebega”, Funkts. analiz i ego prilozh., 5:2 (1971), 91–92 | MR | Zbl