Outer conjugacy of the actions of countable amenable groups on a~measure space
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The following assertion is proved. Let $T$ be an automorphism of a Lebesgue space $(X,\mu)$, preserving the (finite or infinite) measure $\mu$, and
let $U_i(G)$, $i=1,2$, be actions of a countable amenable group $G$ by automorphisms on $(X,\mu)$, such that $U_i(G)\subset N[T]$, where $N[T]$ is the normalizer of the full group $[T]$. For the existence of an automorphism $\theta\in N[T]$ such that $U_1(g)=\theta^{-1}U_2(g)t\theta$ (the outer conjugacy of the actions $U_1$ and $U_2$), where $t=t(g)\in[T]$, $g\in G$, it is necessary and sufficient that
\begin{gather*}
\{g\in G:U_1(g)\in[T]\}=\{g\in G:U_2(g)\in[T]\},\\
\frac{d\mu\circ U_1(g)}{d\mu}=\frac{d\mu\circ U_2(g)}{d\mu}\quad(g\in G).
\end{gather*}
The proof uses properties of cocycles of approximable groups of automorphisms.
Bibliography: 25 titles.
@article{IM2_1987_29_1_a0,
author = {S. I. Bezuglyi and V. Ya. Golodets},
title = {Outer conjugacy of the actions of countable amenable groups on a~measure space},
journal = {Izvestiya. Mathematics },
pages = {1--18},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/}
}
TY - JOUR AU - S. I. Bezuglyi AU - V. Ya. Golodets TI - Outer conjugacy of the actions of countable amenable groups on a~measure space JO - Izvestiya. Mathematics PY - 1987 SP - 1 EP - 18 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/ LA - en ID - IM2_1987_29_1_a0 ER -
S. I. Bezuglyi; V. Ya. Golodets. Outer conjugacy of the actions of countable amenable groups on a~measure space. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a0/