Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1987_28_3_a5, author = {P. L. Polyakov and G. M. Henkin}, title = {Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the {Radon--Penrose} transform}, journal = {Izvestiya. Mathematics }, pages = {555--587}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {1987}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/} }
TY - JOUR AU - P. L. Polyakov AU - G. M. Henkin TI - Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform JO - Izvestiya. Mathematics PY - 1987 SP - 555 EP - 587 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/ LA - en ID - IM2_1987_28_3_a5 ER -
%0 Journal Article %A P. L. Polyakov %A G. M. Henkin %T Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform %J Izvestiya. Mathematics %D 1987 %P 555-587 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/ %G en %F IM2_1987_28_3_a5
P. L. Polyakov; G. M. Henkin. Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/
[1] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[2] Gelfand I. M., Gindikin S. G., Graev M. I., “Integralnaya geometriya v affinnom i proektivnom prostranstvakh”, Sovr. probl. matem., 16, VINITI AN SSSR, 1980, 53–226 | MR
[3] Gindikin S. G., Khenkin G. M., “Preobrazovanie Penrouza i kompleksnaya integralnaya geometriya”, Sovr. probl. matem., 17, VINITI AN SSSR, 1981, 57–111 | MR
[4] Khenkin G. M., “Uravnenie G. Levi i analiz na psevdovypuklom mnogoobrazii”, Uspekhi matem. nauk, 32:3 (1977), 57–118 | MR | Zbl
[5] Chirka E. M., “Potoki i nekotorye ikh primeneniya”, Golomorfnye tsepi i ikh granitsy (dobavlenie k knige: R. Kharvi), Mir, M., 1979, 122–154 | MR
[6] Andreotti A., Norguet F., “La convexite holomorphe dans l'espace analytique des cycles d'une variete algebrique”, Ann. Scuola Norm. Super. Pisa, 21:1 (1967), 31–82 | MR | Zbl
[7] Andreotti A., Tomassini G., “A remark on the vanishing of certain cohomology groups”, Compos. math., 21:4 (1969), 417–430 | MR | Zbl
[8] Eastwood M. G., Penrose R., Wells R. O., “Cohomology and Massless fields”, Commun. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl
[9] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Stud., 75, Princeton University Press, 1972, 146 pp. | MR | Zbl
[10] Gindikin S., Henkin G., “Transformation de Radon pour la $d$-cohomologie des domaines $q$-linearement concaves”, C. R. Acad. Sci., 297:4 (1978), 209–212 | MR
[11] Grauert H., Riemenschneider O., “Kahlersche Mannigfaltigkeiten mit hyper-$q$-konvexen Rand”, Problems in analysis (Lectures Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), 1970, 61–79 | MR | Zbl
[12] Henkin G., “Review of Advances in twistor theory”, Math. Rev., 82F (1982), 2222–2224
[13] Henkin G. M., Leiterer J., Theory of functions on complex manifolds, Akademie-Verlag, Berlin, 1984 | MR | Zbl
[14] Henkin G., Polyakov P., “La continuation des fonctions holomorphes bornees d'un sousvariete du polydisque”, C. R. Acad. Sci., 298:10 (1984), 221–224 | MR | Zbl
[15] Lieb I., “Beschrankte Losungen der Cauchy–Riemannschen Differentialgleichungen auf $q$-konkaven Gebieten”, Manuscripta Math., 26:4 (1979), 387–409 | DOI | MR
[16] Nishiwada K., “On local characterization of wave front sets in terms of boundary values of holomorphic functions”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 14 (1978), 309–320 | DOI | MR | Zbl
[17] Ovrelid N., “Pseudo-differential operators and the $\overline\partial$-equation”, Lecture Notes in Math., 1976, no. 512, 185–192 | DOI | MR | Zbl
[18] Penrose R., “Local $H^{1,}$s and Propagation, in Advances in twistor theory”, Research Notes in Math., 37 (1979), 57–64
[19] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954, 167 pp.
[20] Rothstein W., “Zur theorie der analytischen Mannigfaltigkeiten im Raume von $n$ komplexen Veranderlichen”, Math. Ann., 129:1 (1955), 96–138 | DOI | MR | Zbl
[21] Schmid W., “Homogeneous complex manifolds and representations of semi-simple Lie groups”, Proc. Nat. Acad. Sci. USA, 59 (1968), 56–59 | DOI | MR | Zbl
[22] Wells R. O., “Hyperfunction Solutions of the Zero-Rest-Mass field equations”, Commun. Math. Phys., 78 (1981), 567–600 | DOI | MR | Zbl