Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587

Voir la notice de l'article provenant de la source Math-Net.Ru

Global integral representations are constructed for differential forms on domains in complex projective space $\mathbf CP^n$. Consequences of these representations are the following: first, criteria for the solvability of the inhomogeneous Cauchy–Riemann equations on $q$-pseudoconvex and $q$-pseudoconcave domains in an algebraic manifold; second, explicit formulas and bounds for solutions of these equations; and third, a description of the kernel and image and an inversion formula for the Radon-Penrose transform of $(0,q)$-forms on $q$-linearly concave domains in $\mathbf CP^n$. Bibliography: 23 titles.
@article{IM2_1987_28_3_a5,
     author = {P. L. Polyakov and G. M. Henkin},
     title = {Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the {Radon--Penrose} transform},
     journal = {Izvestiya. Mathematics },
     pages = {555--587},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/}
}
TY  - JOUR
AU  - P. L. Polyakov
AU  - G. M. Henkin
TI  - Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 555
EP  - 587
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/
LA  - en
ID  - IM2_1987_28_3_a5
ER  - 
%0 Journal Article
%A P. L. Polyakov
%A G. M. Henkin
%T Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
%J Izvestiya. Mathematics 
%D 1987
%P 555-587
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/
%G en
%F IM2_1987_28_3_a5
P. L. Polyakov; G. M. Henkin. Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/