Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

Global integral representations are constructed for differential forms on domains in complex projective space $\mathbf CP^n$. Consequences of these representations are the following: first, criteria for the solvability of the inhomogeneous Cauchy–Riemann equations on $q$-pseudoconvex and $q$-pseudoconcave domains in an algebraic manifold; second, explicit formulas and bounds for solutions of these equations; and third, a description of the kernel and image and an inversion formula for the Radon-Penrose transform of $(0,q)$-forms on $q$-linearly concave domains in $\mathbf CP^n$. Bibliography: 23 titles.
@article{IM2_1987_28_3_a5,
     author = {P. L. Polyakov and G. M. Henkin},
     title = {Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the {Radon--Penrose} transform},
     journal = {Izvestiya. Mathematics },
     pages = {555--587},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/}
}
TY  - JOUR
AU  - P. L. Polyakov
AU  - G. M. Henkin
TI  - Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 555
EP  - 587
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/
LA  - en
ID  - IM2_1987_28_3_a5
ER  - 
%0 Journal Article
%A P. L. Polyakov
%A G. M. Henkin
%T Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
%J Izvestiya. Mathematics 
%D 1987
%P 555-587
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/
%G en
%F IM2_1987_28_3_a5
P. L. Polyakov; G. M. Henkin. Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/

[1] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[2] Gelfand I. M., Gindikin S. G., Graev M. I., “Integralnaya geometriya v affinnom i proektivnom prostranstvakh”, Sovr. probl. matem., 16, VINITI AN SSSR, 1980, 53–226 | MR

[3] Gindikin S. G., Khenkin G. M., “Preobrazovanie Penrouza i kompleksnaya integralnaya geometriya”, Sovr. probl. matem., 17, VINITI AN SSSR, 1981, 57–111 | MR

[4] Khenkin G. M., “Uravnenie G. Levi i analiz na psevdovypuklom mnogoobrazii”, Uspekhi matem. nauk, 32:3 (1977), 57–118 | MR | Zbl

[5] Chirka E. M., “Potoki i nekotorye ikh primeneniya”, Golomorfnye tsepi i ikh granitsy (dobavlenie k knige: R. Kharvi), Mir, M., 1979, 122–154 | MR

[6] Andreotti A., Norguet F., “La convexite holomorphe dans l'espace analytique des cycles d'une variete algebrique”, Ann. Scuola Norm. Super. Pisa, 21:1 (1967), 31–82 | MR | Zbl

[7] Andreotti A., Tomassini G., “A remark on the vanishing of certain cohomology groups”, Compos. math., 21:4 (1969), 417–430 | MR | Zbl

[8] Eastwood M. G., Penrose R., Wells R. O., “Cohomology and Massless fields”, Commun. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl

[9] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Stud., 75, Princeton University Press, 1972, 146 pp. | MR | Zbl

[10] Gindikin S., Henkin G., “Transformation de Radon pour la $d$-cohomologie des domaines $q$-linearement concaves”, C. R. Acad. Sci., 297:4 (1978), 209–212 | MR

[11] Grauert H., Riemenschneider O., “Kahlersche Mannigfaltigkeiten mit hyper-$q$-konvexen Rand”, Problems in analysis (Lectures Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), 1970, 61–79 | MR | Zbl

[12] Henkin G., “Review of Advances in twistor theory”, Math. Rev., 82F (1982), 2222–2224

[13] Henkin G. M., Leiterer J., Theory of functions on complex manifolds, Akademie-Verlag, Berlin, 1984 | MR | Zbl

[14] Henkin G., Polyakov P., “La continuation des fonctions holomorphes bornees d'un sousvariete du polydisque”, C. R. Acad. Sci., 298:10 (1984), 221–224 | MR | Zbl

[15] Lieb I., “Beschrankte Losungen der Cauchy–Riemannschen Differentialgleichungen auf $q$-konkaven Gebieten”, Manuscripta Math., 26:4 (1979), 387–409 | DOI | MR

[16] Nishiwada K., “On local characterization of wave front sets in terms of boundary values of holomorphic functions”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 14 (1978), 309–320 | DOI | MR | Zbl

[17] Ovrelid N., “Pseudo-differential operators and the $\overline\partial$-equation”, Lecture Notes in Math., 1976, no. 512, 185–192 | DOI | MR | Zbl

[18] Penrose R., “Local $H^{1,}$s and Propagation, in Advances in twistor theory”, Research Notes in Math., 37 (1979), 57–64

[19] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954, 167 pp.

[20] Rothstein W., “Zur theorie der analytischen Mannigfaltigkeiten im Raume von $n$ komplexen Veranderlichen”, Math. Ann., 129:1 (1955), 96–138 | DOI | MR | Zbl

[21] Schmid W., “Homogeneous complex manifolds and representations of semi-simple Lie groups”, Proc. Nat. Acad. Sci. USA, 59 (1968), 56–59 | DOI | MR | Zbl

[22] Wells R. O., “Hyperfunction Solutions of the Zero-Rest-Mass field equations”, Commun. Math. Phys., 78 (1981), 567–600 | DOI | MR | Zbl