Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587
Voir la notice de l'article provenant de la source Math-Net.Ru
Global integral representations are constructed for differential forms on domains in complex projective space $\mathbf CP^n$.
Consequences of these representations are the following: first, criteria for the solvability of the inhomogeneous Cauchy–Riemann equations on $q$-pseudoconvex and $q$-pseudoconcave domains in an algebraic manifold; second, explicit formulas and bounds for solutions of these equations; and third, a description of the kernel and image and an inversion formula for the Radon-Penrose transform of $(0,q)$-forms on $q$-linearly concave domains in $\mathbf CP^n$.
Bibliography: 23 titles.
@article{IM2_1987_28_3_a5,
author = {P. L. Polyakov and G. M. Henkin},
title = {Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the {Radon--Penrose} transform},
journal = {Izvestiya. Mathematics },
pages = {555--587},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/}
}
TY - JOUR AU - P. L. Polyakov AU - G. M. Henkin TI - Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform JO - Izvestiya. Mathematics PY - 1987 SP - 555 EP - 587 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/ LA - en ID - IM2_1987_28_3_a5 ER -
%0 Journal Article %A P. L. Polyakov %A G. M. Henkin %T Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform %J Izvestiya. Mathematics %D 1987 %P 555-587 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/ %G en %F IM2_1987_28_3_a5
P. L. Polyakov; G. M. Henkin. Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon--Penrose transform. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 555-587. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a5/