A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 421-444

Voir la notice de l'article provenant de la source Math-Net.Ru

The basis for most of the results in this paper is a theorem that a perturbed operator with disjoint parts of the spectrum is similar to an operator for which the subspaces constructed from the isolated parts of the unperturbed operator are invariant. In particular, estimates are obtained for the eigenvalues and projections of the perturbed operators, results about equiconvergence of spectral decompositions are obtained, and convergence questions for the eigenvalues are investigated with the use of projection methods. Bibliography: 15 titles.
@article{IM2_1987_28_3_a0,
     author = {A. G. Baskakov},
     title = {A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations},
     journal = {Izvestiya. Mathematics },
     pages = {421--444},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 421
EP  - 444
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/
LA  - en
ID  - IM2_1987_28_3_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
%J Izvestiya. Mathematics 
%D 1987
%P 421-444
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/
%G en
%F IM2_1987_28_3_a0
A. G. Baskakov. A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 421-444. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/