A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 421-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basis for most of the results in this paper is a theorem that a perturbed operator with disjoint parts of the spectrum is similar to an operator for which the subspaces constructed from the isolated parts of the unperturbed operator are invariant. In particular, estimates are obtained for the eigenvalues and projections of the perturbed operators, results about equiconvergence of spectral decompositions are obtained, and convergence questions for the eigenvalues are investigated with the use of projection methods. Bibliography: 15 titles.
@article{IM2_1987_28_3_a0,
     author = {A. G. Baskakov},
     title = {A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations},
     journal = {Izvestiya. Mathematics },
     pages = {421--444},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 421
EP  - 444
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/
LA  - en
ID  - IM2_1987_28_3_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
%J Izvestiya. Mathematics 
%D 1987
%P 421-444
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/
%G en
%F IM2_1987_28_3_a0
A. G. Baskakov. A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 421-444. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a0/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Fridrikhs K., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[3] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnye operatory, t. III, Mir, M., 1974

[4] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, dopolnenie k knige: Voitovich N. N., Katsenelenbaum B. 3., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[5] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[6] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[7] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[8] Baskakov A. G., Zamena Krylova–Bogolyubova v teorii nelineinykh vozmuschenii lineinykh operatorov, Preprint IM AN USSR, 80.19, IM, Kiev, 1980

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[10] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR

[11] Markus M., Mink X., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[12] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee prilozheniya, IL, M., 1960

[13] Fridlender L. F., “O nekotorykh spektralnykh svoistvakh ochen slabykh nesamosopryazhennykh vozmuschenii samosopryazhennykh operatorov”, Trudy Mosk. matem. ob-va, 41, 1980, 181–216 | MR | Zbl

[14] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, LGU, L., 1972 | MR

[15] Korolyuk V. S., Turbin A. F., Matematicheskie osnovy fazovogo ukrupneniya slozhnykh sistem, Naukova dumka, K., 1978 | MR