Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1987_28_2_a4, author = {N. L. Gordeev}, title = {Finite linear groups whose algebras of invariants are complete intersections}, journal = {Izvestiya. Mathematics }, pages = {335--379}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {1987}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a4/} }
N. L. Gordeev. Finite linear groups whose algebras of invariants are complete intersections. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 335-379. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a4/
[1] Gordeev N. L., “Ob invariantakh lineinykh grupp, porozhdennykh matritsami s dvumya needinichnymi sobstvennymi znacheniyami”, Zap. nauch. seminarov Leningr. otd. Matem. in-ta AN SSSR, 114, 1982, 120–130 | MR | Zbl
[2] Gordeev N. L., “O podgruppakh konechnoi gruppy, algebra invariantov kotoroi –polnoe peresechenie”, Zap. nauch. seminarov Leningr. otd. Matem. in-ta AN SSSR, 116, 1982, 63–67 | MR
[3] Gordeev N. L., “O gipoteze Stenli i klassifikatsii konechnykh grupp, algebra invariantov kotorykh est polnoe peresechenie”, Dokl. AN SSSR, 267:5 (1982), 1040–1043 | MR | Zbl
[4] Gordeev N. L., “O klassifikatsii konechnykh grupp, algebra invariantov kotorykh – polnoe peresechenie”, XVII Vsesoyuznaya algebraicheskaya konferentsiya, tezisy dokl., ch. I, Minsk, 1983, 55
[5] Springer T., Teoriya invariantov, Mir, M., 1968, 192 pp. | MR
[6] Avramov L., Invariants of local rings under the action of finite groups generated by pseudo-reflection, Preprint series in math. No 64, Bucuresti, 1980
[7] Blichfeldt H. F., Finite collineation groups, Univ. Chicago Press, Chicago, 1917
[8] Brauer R., “Über endliche lineare Gruppen von Primzahlgrad”, Math. Ann., 169 (1967), 73–96 | DOI | MR | Zbl
[9] Grothendieck A., Cohomologie local des faiceaux coherents et Theoremes de Lefschetz locaux et globaux, SGA 2, Amsterdam, 1968, 287 pp. | MR
[10] Feit W., “The current situation in the theorv of finite simple groups”, Actes du Congres Inter. Math. (Nice, 1970), 1, Gauthier–Villar, Paris, 1971, 55–93 | MR
[11] Huffman W. C., “Linear groups containing an element with an eigenspace of codimension two”, Algebra, 34:2 (1975), 260–287 | DOI | MR | Zbl
[12] Huffman W. C., “Imprimitive linear groups generated by elements containing an eigenspace of codimension two”, Algebra, 63:2 (1980), 489–513 | DOI | MR
[13] Huffman W. C., Wales D. B., “Linear groups of degree n containing an element with exactly $n$-2 equal eigenvalues”, J. of Linear and Multilinear Algebra, 3:1–2 (1975), 53–59 | DOI | MR | Zbl
[14] Kac V., Watanabe K., “Finite linear groups whose rings of invariants is a complete intersection”, Bull. Amer. Math. Soc., 6 (1982), 221–223 | DOI | MR | Zbl
[15] Miller G. A., Blichfeldt H. F., Dicson L. F., Theory and application of finite groups, Dover Publications, INC, New York, 1961, 390 pp. | MR | Zbl
[16] Mitehell H. H., “Determinations of all primitive collineation groups in more than four variables which contain homologies”, Amer. J. Math., 36 (1914), 1–12 | DOI | MR
[17] Nagata M., Local rings, Interscience Tracts in Pure and Applied Mathematics, New York, 1962, 234 pp. | MR | Zbl
[18] Rotillon D., “Deux contre-exemples a une conjecture de R. Stanley sur les anneeux d'invariants intersections completes”, C. R. Acad. Sci. Paris Sér. I Math., 292:6 (1981), 345–348 | MR | Zbl
[19] Stanley R., “Hilbert functions of graded algebras”, Adv. in Math., 28 (1978), 57–83 | DOI | MR | Zbl
[20] Stanley R., “Invariants of finite groups and their applications to combinatorics”, Bull. Amer. Math. Soc., 1:3 (1979), 475–511 | DOI | MR | Zbl
[21] Shephard G. G., Todd T. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–303 | MR
[22] Wales D. B., “Linear groups of degree $n$ containing an involution with two eigenvalues. II”, Algebra, 53:1 (1978), 58–67 | DOI | MR | Zbl
[23] Watanabe K., “Certain invariants subrings are Gorenstein. II”, Osaca J. Math., 11 (1974), 379–388 | MR | Zbl
[24] Watanabe K., “Invariant subrings which are complete intersections. I. Invariant subrings of finite Abelian groups”, Nagaya. Math. J., 77 (1979), 89–98 | MR
[25] Watanabe K., “Invariant subrings of finite groups which are complete intersection”, Commutative Algebra (Analytical Methods), ed. R. N. Draper, Mareel Dekker, INC, New York, Basel, 1982, 37–44 | MR
[26] Watanabe K., Rotillon D., “Invariant subrings of $C[X,Y,Z]$ which are complete intersections”, Manuscr. Math., 33 (1982), 339–357 | DOI | MR