Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303

Voir la notice de l'article provenant de la source Math-Net.Ru

The general optimum control problem considered here is linear in the control and without constraints on the control. Quadratic (i.e., second-order) necessary and sufficient conditions are given for the problem to have a minimum in the class of variations bounded in modulus by an arbitrary constant and having small integral. These conditions are stronger than the previously known conditions for a weak minimum, and, like the latter conditions, constitute an adjoining pair, i.e., the sufficient condition differs from the necessary condition only in the strengthening of an inequality. Bibliography: 17 titles.
@article{IM2_1987_28_2_a2,
     author = {A. V. Dmitruk},
     title = {Quadratic conditions for {a~Pontryagin} minimum in an optimum control problem linear in the {control.~I:} {A~decoding} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {275--303},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 275
EP  - 303
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/
LA  - en
ID  - IM2_1987_28_2_a2
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
%J Izvestiya. Mathematics 
%D 1987
%P 275-303
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/
%G en
%F IM2_1987_28_2_a2
A. V. Dmitruk. Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/