Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general optimum control problem considered here is linear in the control and without constraints on the control. Quadratic (i.e., second-order) necessary and sufficient conditions are given for the problem to have a minimum in the class of variations bounded in modulus by an arbitrary constant and having small integral. These conditions are stronger than the previously known conditions for a weak minimum, and, like the latter conditions, constitute an adjoining pair, i.e., the sufficient condition differs from the necessary condition only in the strengthening of an inequality. Bibliography: 17 titles.
@article{IM2_1987_28_2_a2,
     author = {A. V. Dmitruk},
     title = {Quadratic conditions for {a~Pontryagin} minimum in an optimum control problem linear in the {control.~I:} {A~decoding} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {275--303},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 275
EP  - 303
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/
LA  - en
ID  - IM2_1987_28_2_a2
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
%J Izvestiya. Mathematics 
%D 1987
%P 275-303
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/
%G en
%F IM2_1987_28_2_a2
A. V. Dmitruk. Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/

[1] Levitin E. S., Milyutin A. A., Osmolovskii N. P., “Usloviya vysshikh poryadkov lokalnogo minimuma v zadachakh s ogranicheniyami”, Uspekhi matem. nauk, 33:6 (1978), 85–148 | MR

[2] Milyutin A. A., “O kvadratichnykh usloviyakh ekstremuma v gladkikh zadachakh s konechnomernym obrazom”, Metody teorii ekstremalnykh zadach v ekonomike, Nauka, M., 1981, 138–177 | MR

[3] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, ZhVM i MF, 5:3 (1965), 395–453 | Zbl

[4] Goh B. S., “Necessary conditions for singular extremals involving multiple control variables”, SIAM J. Control, 4:4 (1966), 716–731 | DOI | MR | Zbl

[5] Vapnyarskii I. B., “Teorema suschestvovaniya optimalnogo upravleniya v zadache Boltsa, nekotorye ee prilozheniya i neobkhodimye usloviya optimalnosti skolzyaschikh i osobykh rezhimov”, ZhVM i MF, 7:2 (1967), 259–283

[6] Dmitruk A. V., “Kvadratichnye neobkhodimye i dostatochnye usloviya slabogo minimuma dlya osobykh rezhimov”, Materialy Vsesoyuznogo simpoziuma po optimalnomu upravleniyu i diff. igram, Metsniereba, Tbilisi, 1977, 95–100

[7] Dmitruk A. V., “Kvadratichnye usloviya slabogo minimuma dlya osobykh rezhimov v zadachakh optimalnogo upravleniya”, Dokl. AN SSSR, 233:4 (1977), 523–526 ; Труды VIII зимней школы по математическому программированию и смежным вопросам, ЦЭМИ АН СССР, М., 1976, 102–119 | MR | Zbl

[8] Osmolovskii N. P., “Usloviya vtorogo poryadka slabogo lokalnogo minimuma v zadache optimalnogo upravleniya (neobkhodimost, dostatochnost)”, Dokl. AN SSSR, 225:2 (1975), 259–262 | MR | Zbl

[9] Dubovitskii V. A., Neobkhodimye i dostatochnye usloviya minimuma v zadache optimalnogo upravleniya s osobymi rezhimami, Preprint, Chernogolovka, 1981

[10] Lyusternik L. A., “Ob uslovnykh ekstremumakh funktsionalov”, Matem. sb., 41:3 (1934), 390–401 | MR | Zbl

[11] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi matem. nauk, 35:6 (1980), 11–46 | MR | Zbl

[12] Dmitruk A. V., “Kvadratichnye usloviya pontryaginskogo minimuma v zadache optimalnogo upravleniya, lineinoi po upravleniyu, s ogranicheniem na upravlenie”, Dokl. AN SSSR, 272:2 (1983), 285–289 | MR

[13] Dmitruk A. V., “Uslovie tipa Yakobi neotritsatelnosti kvadratichnoi formy na konechnogrannom konuse”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 608–619 | MR | Zbl

[14] Hoffman A. J., “On approximate solutions of systems of linear inequalities”, J. Research of National Bureau of Standards, 49:4 (1952) | MR

[15] Fan Tszi, “Teoremy o minimakse”, Beskonechnye antagonisticheskie igry, Fizmatgiz, M., 1963, 31–39

[16] Dmitruk A. V., “Usloviya tipa Yakobi dlya zadachi Boltsa s neravenstvami”, Matem. zametki, 35:6 (1984), 813–827 | MR | Zbl

[17] Osmolovskii N. P., “Neobkhodimye i dostatochnye usloviya vysshego poryadka dlya pontryaginskogo i silnogo minimumov v zadache optimalnogo upravleniya”, Metody optimizatsii, 12, VNIISI, M., 1984, 37–47