Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303
Voir la notice de l'article provenant de la source Math-Net.Ru
The general optimum control problem considered here is linear in the control and without constraints on the control. Quadratic (i.e., second-order) necessary and sufficient conditions are given for the problem to have a minimum in the class of variations bounded in modulus by an arbitrary constant and having small integral. These conditions are stronger than the previously known conditions for a weak minimum, and, like the latter conditions, constitute an adjoining pair, i.e., the sufficient condition differs from the necessary condition only in the strengthening of an inequality.
Bibliography: 17 titles.
@article{IM2_1987_28_2_a2,
author = {A. V. Dmitruk},
title = {Quadratic conditions for {a~Pontryagin} minimum in an optimum control problem linear in the {control.~I:} {A~decoding} theorem},
journal = {Izvestiya. Mathematics },
pages = {275--303},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/}
}
TY - JOUR AU - A. V. Dmitruk TI - Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem JO - Izvestiya. Mathematics PY - 1987 SP - 275 EP - 303 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/ LA - en ID - IM2_1987_28_2_a2 ER -
%0 Journal Article %A A. V. Dmitruk %T Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem %J Izvestiya. Mathematics %D 1987 %P 275-303 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/ %G en %F IM2_1987_28_2_a2
A. V. Dmitruk. Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 275-303. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a2/