The number of integers representable as a~sum of two squares on small intervals
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M(m,h)$ denote the number of natural numbers in the interval $(m;m+h)$ which are representable as a sum of two squares. Under the condition $n>\ln^{42,5+\varepsilon}X$, $\varepsilon>0$, a best possible lower bound for $M(m,h)$ is established for almost all $m\leqslant X$ (for all but $o(X)$).
Bibliography: 14 titles.
@article{IM2_1987_28_1_a3,
author = {V. A. Plaksin},
title = {The number of integers representable as a~sum of two squares on small intervals},
journal = {Izvestiya. Mathematics },
pages = {67--78},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/}
}
V. A. Plaksin. The number of integers representable as a~sum of two squares on small intervals. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/