The number of integers representable as a~sum of two squares on small intervals
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M(m,h)$ denote the number of natural numbers in the interval $(m;m+h)$ which are representable as a sum of two squares. Under the condition $n>\ln^{42,5+\varepsilon}X$, $\varepsilon>0$, a best possible lower bound for $M(m,h)$ is established for almost all $m\leqslant X$ (for all but $o(X)$). Bibliography: 14 titles.
@article{IM2_1987_28_1_a3,
     author = {V. A. Plaksin},
     title = {The number of integers representable as a~sum of two squares on small intervals},
     journal = {Izvestiya. Mathematics },
     pages = {67--78},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - The number of integers representable as a~sum of two squares on small intervals
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 67
EP  - 78
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/
LA  - en
ID  - IM2_1987_28_1_a3
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T The number of integers representable as a~sum of two squares on small intervals
%J Izvestiya. Mathematics 
%D 1987
%P 67-78
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/
%G en
%F IM2_1987_28_1_a3
V. A. Plaksin. The number of integers representable as a~sum of two squares on small intervals. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/

[1] Vinogradov A. I., “O chislakh s malymi prostymi delitelyami”, Dokl. AN SSSR, 109:4 (1956), 683–686 | MR | Zbl

[2] Vinogradov A. I., Linnik Yu. V., “Otsenka summy chisla delitelei v korotkom otrezke arifmeticheskoi progressii”, Uspekhi matem. nauk, 12:4 (1957), 277–280 | MR | Zbl

[3] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[4] Selberg A., “Metody resheta”, Problemy analiticheskoi teorii chisel, Mir, M., 1975, 43–107

[5] Chebyshev P. L., Izbrannye trudy, Izd-vo AN SSSR, M., 1955 | MR

[6] Fridlander J., “Sifting short intervals”, Math. Proc. Camb. Phil. Soc., 91:1 (1982), 9–15 | DOI | MR

[7] Harman G., “On the distribution of $\alpha p$ modulo one”, J. London Math. Soc., 27:1 (1983), 9–18 | DOI | MR | Zbl

[8] Heath-Brown D. R., Iwaniec H., “On the difference between consecutive primes”, Invent. Math., 55:1 (1979), 49–69 | DOI | MR | Zbl

[9] Heath-Brown D. R., “Gaps between consecutive primes and the correlation of zeros of the zeta-function”, Acta Arithm., 41:1 (1982), 85–99 | MR | Zbl

[10] Hooley C., “On the intervals between numbers that are sums of two squares”, Acta Math., 127:3–4 (1971), 279–297 | DOI | MR | Zbl

[11] Hooley C., “On the intervals between consecutive terms of sequencies”, Analytic number theory (Proc. Symp. Pure Math.), 24, AMS, 1973, 123–140 | MR

[12] Hooley C., Applications of sieve methods to the theory of numbers, Camb. Univ. Press, 1976 | MR

[13] Iwaniec H., “The half dimensional sieve”, Acta Arithm., 29:1 (1976), 69–95 | MR | Zbl

[14] Motohashi Y., “On the number of integers which are sums of two squares”, Acta Arithm., 23:4 (1973), 401– 412 | MR | Zbl