The number of integers representable as a~sum of two squares on small intervals
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M(m,h)$ denote the number of natural numbers in the interval $(m;m+h)$ which are representable as a sum of two squares. Under the condition $n>\ln^{42,5+\varepsilon}X$, $\varepsilon>0$, a best possible lower bound for $M(m,h)$ is established for almost all $m\leqslant X$ (for all but $o(X)$). Bibliography: 14 titles.
@article{IM2_1987_28_1_a3,
     author = {V. A. Plaksin},
     title = {The number of integers representable as a~sum of two squares on small intervals},
     journal = {Izvestiya. Mathematics },
     pages = {67--78},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - The number of integers representable as a~sum of two squares on small intervals
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 67
EP  - 78
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/
LA  - en
ID  - IM2_1987_28_1_a3
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T The number of integers representable as a~sum of two squares on small intervals
%J Izvestiya. Mathematics 
%D 1987
%P 67-78
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/
%G en
%F IM2_1987_28_1_a3
V. A. Plaksin. The number of integers representable as a~sum of two squares on small intervals. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a3/