On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 37-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability in Sobolev spaces $W_q^{2l,l}$ is proved and properties of solutions are investigated for the following initial boundary value problem: \begin{gather*} \frac{\partial\bar{\mathbf u}}{\partial t}=\nabla^2\bar{\mathbf v}+\nabla p=\bar{\mathbf f},\qquad\nabla\cdot\bar{\mathbf v}=\rho\quad\text{in}\quad Q_T=\Omega\times(0,T),\\ \bar{\mathbf v}|_{t=0}=\bar v^0,\qquad B\biggl(x,t,\frac\partial{\partial x},\frac\partial{\partial t}\biggr)(\bar{\mathbf v},p)\Bigr|_{x\in\partial\Omega}=\bar{\mathbf\Phi}, \end{gather*} where $\Omega$ is a bounded domain in $\mathbf R^3$ with smooth boundary, and $B$ is a matrix differential operator. It is proved that under particular conditions imposed on the data of the problem and boundary operator $B$ there exists a solution $\bar{\mathbf v}\in W_q^{2l,l}(Q_T)$, $\nabla\rho\in W_q^{2l-2,l-1}(Q_T)$. The question of necessity of these conditions is investigated. Bibliography: 18 titles.
@article{IM2_1987_28_1_a2,
     author = {I. Sh. Mogilevskii},
     title = {On a~boundary value problem for the time-dependent {Stokes} system with general boundary conditions},
     journal = {Izvestiya. Mathematics },
     pages = {37--66},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/}
}
TY  - JOUR
AU  - I. Sh. Mogilevskii
TI  - On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 37
EP  - 66
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/
LA  - en
ID  - IM2_1987_28_1_a2
ER  - 
%0 Journal Article
%A I. Sh. Mogilevskii
%T On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
%J Izvestiya. Mathematics 
%D 1987
%P 37-66
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/
%G en
%F IM2_1987_28_1_a2
I. Sh. Mogilevskii. On a~boundary value problem for the time-dependent Stokes system with general boundary conditions. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 37-66. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/

[1] Mogilevskii I. Sh., “O razreshimosti obschei kraevoi zadachi dlya linearizovannoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zapiski nauchnykh seminarov Len. otd. Matem. in-ta AN SSSR, 110, 1981, 105–119 | MR | Zbl

[2] Mogilevskii I. Sh., “Otsenki reshenii obschei nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa v ogranichennoi oblasti”, Trudy Matem. in-ta AN SSSR, 159, 1983, 61–94 | MR | Zbl

[3] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi linearizovannoi sistemy uravnenii Nave–Stoksa”, Trudy Matem. in-ta AN SSSR, 70, 1964, 213–317 | MR | Zbl

[4] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zapiski nauchnykh seminarov Len. otd. Matem. in-ta AN SSSR, 38, 1973, 153–231 | MR | Zbl

[5] Solonnikov V. A., “Otsenki resheniya odnoi nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zapiski nauchnykh seminarov Len. otd. Matem. in-ta AN SSSR, 59, 1976, 178–254 | MR | Zbl

[6] Solonnikov V. A., “O razreshimosti vtoroi nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zapiski nauchnykh seminarov Len. otd. Matem. in-ta AN SSSR, 69, 1977, 200–218 | MR | Zbl

[7] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[8] Sakhaev Sh., Solonnikov V. A., “Otsenki reshenii odnoi kraevoi zadachi magnitnoi gidrodinamiki”, Trudy Matem. in-ta AN SSSR, 127, 1975, 76–92 | MR | Zbl

[9] Mogilevskii I. Sh., “Otsenki resheniya obschei nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa v poluprostranstve”, Zapiski nauchnykh seminarov Len. otd. Matem. in-ta AN SSSR, 84, 1979, 147–173 | MR | Zbl

[10] Volevich L. R., “Razreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Matem. sbornik, 68:3 (1965), 373–416 | Zbl

[11] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 70, 1964, 133–212 | MR | Zbl

[12] Solonnikov V. A., “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Trudy Matem. in-ta AN SSSR, 83, 1965, 1–162 | MR

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[14] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solution of elleptic partial differential equations satisfying general boundary conditions. I”, Communications on Pure and Appl. Math., 12:4 (1959), 623–727 ; “II”, Communications on Pure and Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[16] Solonnikov V. A., “Issledovanie pereopredelennykh ellipticheskikh kraevykh zadach v drobnykh prostranstvakh K. K. Golovkina”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 127, 1975, 93–114 | MR | Zbl

[17] Fabes E., Lewis J., Riviere N., “Boundary value problem for the Navier–Stokes equations”, Amer. Journ. of Math., 39:3 (1977), 626–668 | DOI | MR

[18] Mogilevskii I. Sh., Issledovanie obschei kraevoi zadachi dlya nestatsionarnoi sistemy Stoksa, Kand. dissertatsiya, Leningr. otd. Matem. in-ta AN SSSR, 1982