On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 37-66

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability in Sobolev spaces $W_q^{2l,l}$ is proved and properties of solutions are investigated for the following initial boundary value problem: \begin{gather*} \frac{\partial\bar{\mathbf u}}{\partial t}=\nabla^2\bar{\mathbf v}+\nabla p=\bar{\mathbf f},\qquad\nabla\cdot\bar{\mathbf v}=\rho\quad\text{in}\quad Q_T=\Omega\times(0,T),\\ \bar{\mathbf v}|_{t=0}=\bar v^0,\qquad B\biggl(x,t,\frac\partial{\partial x},\frac\partial{\partial t}\biggr)(\bar{\mathbf v},p)\Bigr|_{x\in\partial\Omega}=\bar{\mathbf\Phi}, \end{gather*} where $\Omega$ is a bounded domain in $\mathbf R^3$ with smooth boundary, and $B$ is a matrix differential operator. It is proved that under particular conditions imposed on the data of the problem and boundary operator $B$ there exists a solution $\bar{\mathbf v}\in W_q^{2l,l}(Q_T)$, $\nabla\rho\in W_q^{2l-2,l-1}(Q_T)$. The question of necessity of these conditions is investigated. Bibliography: 18 titles.
@article{IM2_1987_28_1_a2,
     author = {I. Sh. Mogilevskii},
     title = {On a~boundary value problem for the time-dependent {Stokes} system with general boundary conditions},
     journal = {Izvestiya. Mathematics },
     pages = {37--66},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/}
}
TY  - JOUR
AU  - I. Sh. Mogilevskii
TI  - On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 37
EP  - 66
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/
LA  - en
ID  - IM2_1987_28_1_a2
ER  - 
%0 Journal Article
%A I. Sh. Mogilevskii
%T On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
%J Izvestiya. Mathematics 
%D 1987
%P 37-66
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/
%G en
%F IM2_1987_28_1_a2
I. Sh. Mogilevskii. On a~boundary value problem for the time-dependent Stokes system with general boundary conditions. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 37-66. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a2/