On $TI$-subgroups of finite groups
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 21-35

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the normal closure in a finite group of an elementary $2$-subgroup $A$ which is a $TI$-subgroup, and which satisfies the following condition: for an arbitrary collection $A_1,A_2,\dots,A_k$ ($k\geqslant2$) of distinct commuting subgroups conjugate to $A$, the product $A_2\dots A_k$ does not contain $A_1$. Bibliography: 17 titles.
@article{IM2_1987_28_1_a1,
     author = {A. A. Makhnev},
     title = {On $TI$-subgroups of finite groups},
     journal = {Izvestiya. Mathematics },
     pages = {21--35},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a1/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On $TI$-subgroups of finite groups
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 21
EP  - 35
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a1/
LA  - en
ID  - IM2_1987_28_1_a1
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On $TI$-subgroups of finite groups
%J Izvestiya. Mathematics 
%D 1987
%P 21-35
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a1/
%G en
%F IM2_1987_28_1_a1
A. A. Makhnev. On $TI$-subgroups of finite groups. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 21-35. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a1/