Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1986_27_2_a7, author = {S. I. Yablokova}, title = {Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter}, journal = {Izvestiya. Mathematics }, pages = {359--389}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {1986}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/} }
TY - JOUR AU - S. I. Yablokova TI - Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter JO - Izvestiya. Mathematics PY - 1986 SP - 359 EP - 389 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/ LA - en ID - IM2_1986_27_2_a7 ER -
%0 Journal Article %A S. I. Yablokova %T Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter %J Izvestiya. Mathematics %D 1986 %P 359-389 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/ %G en %F IM2_1986_27_2_a7
S. I. Yablokova. Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter. Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 359-389. http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/
[1] Chernavskii A. V., “Styagivaemye okrestnosti v gruppe gomeomorfizmov”, Dokl. AN SSSR, 217:2 (1974), 301–303
[2] Chernavskii A. V., Matveev S. V., Osnovy topologii mnogoobrazii, Nauchnye trudy, 192, Kubanskii gos. univ., 1974 | MR
[3] Rurk K., Sanderson V., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR
[4] Yablokova S. I., “Privedenie v obschee polozhenie otobrazhenii odnomernykh poliedrov v ploskost v nepreryvnoi zavisimosti ot parametra”, Geometricheskie metody v zadachakh algebry i analiza, Yaroslavl, 1980, 137–148 | MR | Zbl
[5] Zeeman E. C., “On the dunce hat”, Topology, 2 (1963), 341–358 | DOI | MR | Zbl
[6] Stallings J., “The piecewise-linear structure of Euclidean space”, Proc. Cambridge Phih Soc., 58:3 (1962), 481–488 | DOI | MR | Zbl