Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter
Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 359-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a proof of the fact that by refining the triangulation of a one-dimensional polyhedron, one can approximate a given mapping of that polyhedron into $\mathbf R^k$ by a piecewise linear mapping having no more than a zero-dimensional violation of general position; and that all this can be carried out continuously with respect to a parameter running through a strongly paracompact space. Spaces of triangulations of one-dimensional simplexes are also investigated, and the structure of spaces of semilinear mappings of a one-dimensional polyhedron into Euclidean space is considered. Figures: 6. Bibliography: 6 titles.
@article{IM2_1986_27_2_a7,
     author = {S. I. Yablokova},
     title = {Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter},
     journal = {Izvestiya. Mathematics },
     pages = {359--389},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/}
}
TY  - JOUR
AU  - S. I. Yablokova
TI  - Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 359
EP  - 389
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/
LA  - en
ID  - IM2_1986_27_2_a7
ER  - 
%0 Journal Article
%A S. I. Yablokova
%T Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter
%J Izvestiya. Mathematics 
%D 1986
%P 359-389
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/
%G en
%F IM2_1986_27_2_a7
S. I. Yablokova. Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter. Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 359-389. http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/

[1] Chernavskii A. V., “Styagivaemye okrestnosti v gruppe gomeomorfizmov”, Dokl. AN SSSR, 217:2 (1974), 301–303

[2] Chernavskii A. V., Matveev S. V., Osnovy topologii mnogoobrazii, Nauchnye trudy, 192, Kubanskii gos. univ., 1974 | MR

[3] Rurk K., Sanderson V., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[4] Yablokova S. I., “Privedenie v obschee polozhenie otobrazhenii odnomernykh poliedrov v ploskost v nepreryvnoi zavisimosti ot parametra”, Geometricheskie metody v zadachakh algebry i analiza, Yaroslavl, 1980, 137–148 | MR | Zbl

[5] Zeeman E. C., “On the dunce hat”, Topology, 2 (1963), 341–358 | DOI | MR | Zbl

[6] Stallings J., “The piecewise-linear structure of Euclidean space”, Proc. Cambridge Phih Soc., 58:3 (1962), 481–488 | DOI | MR | Zbl