Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter
Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 359-389
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to a proof of the fact that by refining the triangulation of a one-dimensional polyhedron, one can approximate a given mapping of that polyhedron into $\mathbf R^k$ by a piecewise linear mapping having no more than a zero-dimensional violation of general position; and that all this can be carried out continuously with respect to a parameter running through a strongly paracompact space. Spaces of triangulations of one-dimensional simplexes are also investigated, and the structure of spaces of semilinear mappings of a one-dimensional polyhedron into Euclidean space is considered.
Figures: 6.
Bibliography: 6 titles.
@article{IM2_1986_27_2_a7,
author = {S. I. Yablokova},
title = {Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter},
journal = {Izvestiya. Mathematics },
pages = {359--389},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/}
}
TY - JOUR AU - S. I. Yablokova TI - Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter JO - Izvestiya. Mathematics PY - 1986 SP - 359 EP - 389 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/ LA - en ID - IM2_1986_27_2_a7 ER -
%0 Journal Article %A S. I. Yablokova %T Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter %J Izvestiya. Mathematics %D 1986 %P 359-389 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/ %G en %F IM2_1986_27_2_a7
S. I. Yablokova. Reduction to general position of a~mapping of a~one-dimensional polyhedron, depending continuously on a~parameter. Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 359-389. http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a7/