Families of algebraic varieties and invariant cycles
Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 251-278

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies monodromy-invariant cycles in the cohomology of fibers of a family of algebraic varieties. It is shown that the localization of invariant cycles in a neighborhood of a degeneration of the family is a morphism of Hodge structures. An application of this result is the geometric analogue of the Mumford–Tate conjecture for families with strong degenerations. A large class of nonconstant abelian schemes for which the geometric analogue of the Mumford–Tate conjecture holds is constructed. Bibliography: 29 titles.
@article{IM2_1986_27_2_a3,
     author = {G. A. Mustafin},
     title = {Families of algebraic varieties and invariant cycles},
     journal = {Izvestiya. Mathematics },
     pages = {251--278},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a3/}
}
TY  - JOUR
AU  - G. A. Mustafin
TI  - Families of algebraic varieties and invariant cycles
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 251
EP  - 278
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a3/
LA  - en
ID  - IM2_1986_27_2_a3
ER  - 
%0 Journal Article
%A G. A. Mustafin
%T Families of algebraic varieties and invariant cycles
%J Izvestiya. Mathematics 
%D 1986
%P 251-278
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a3/
%G en
%F IM2_1986_27_2_a3
G. A. Mustafin. Families of algebraic varieties and invariant cycles. Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 251-278. http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a3/