On the structure of the Brauer group of fields
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 141-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the structure of the Brauer group of an arbitrary field. It is proved that, for any odd prime $p$ different from the characteristic of the field $F$, the subgroup $_q\mathrm{Br}(F)$ of elements of order $q=p^n$ in the Brauer group of $F$ is generated by the images of the cyclic algebras $A_\xi(x,y)$ under the corestriction map $_q\mathrm{Br}(F(\xi_q))\to{_q\mathrm{Br}}(F)$. As a corollary it is shown that $_q\mathrm{Br}(F)$ is generated by elements whose index is bounded by $q^{q/p}$. A representation of the $p$-component $\mathrm{Br}(F)\{p\}$ of the Brauer group by means of generators and relations is obtained, and the specialization homomorphism $\mathrm{Br}(T)\{p\}\to\mathrm{Br}(K)\{p\}$, where $T$ is a local algebra and $K$ is the residue field, is shown to be surjective. Similar results are obtained in the case $p=2$. Bibliography: 20 titles.
@article{IM2_1986_27_1_a7,
     author = {A. S. Merkur'ev},
     title = {On the structure of the {Brauer} group of fields},
     journal = {Izvestiya. Mathematics },
     pages = {141--157},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - On the structure of the Brauer group of fields
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 141
EP  - 157
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
LA  - en
ID  - IM2_1986_27_1_a7
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T On the structure of the Brauer group of fields
%J Izvestiya. Mathematics 
%D 1986
%P 141-157
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
%G en
%F IM2_1986_27_1_a7
A. S. Merkur'ev. On the structure of the Brauer group of fields. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/

[1] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[2] Kartan A., Eilenberg S., Gomologicheskaya algebra, Inostrannaya literatura, M., 1960 | MR

[3] Kassels D., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[4] Leng S., Algebra, Mir, M., 1968

[5] Merkurev A. S., “O gomomorfizme normennogo vycheta stepeni dva”, Dokl. AN SSSR, 261:3 (1981), 542–547 | MR

[6] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR

[7] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[8] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[9] Albert A. A., Structure of algebras, Amer. Math. Soc. Coll. Publ, XXIV, 1961 | MR

[10] Auslender M., Brumer A., “Brauer groups of discrete valuation rings”, Nederl. Akad. Wetensch. Proc., ser. A, 71 (1968), 288–296

[11] Auslender M., Goldman O., “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc., 97 (1960), 367–409 | DOI | MR

[12] Bass H., Tate J., “The Milnor ring of a global field”, Lecture Notes. Math., 342, 1973, 349–446 | MR | Zbl

[13] Chase S. U., Harrison D. K., Rosenberg A., “Galois theory and Galois cohomology of commutative rings”, Mem. Amer. Math. Soc., 52 (1968), 1–19 | MR

[14] Draksl P. K., Skew fields, London Math. Soc. Lecture Note Series, 81, Cambridge University Press, 1982

[15] Kato K., “A generalization of local class field theory by using $K$-groups. II”, Journal of the faculty of Science the University of Tokyo, Sec. IA, 27:3 (1980), 603–683 | MR | Zbl

[16] Milne J. S., Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980 | MR | Zbl

[17] Riehm C., “The corestriction of algebraic structures”, Inventiones math., 11 (1970), 73–98 | DOI | MR | Zbl

[18] Saltman D., “Generic Galois extensions and problems in field theory”, Advances in Math., 43 (1982), 250–284 | DOI | MR

[19] Suslin A. A., Torsion in $K_2$ of fields, LOMI preprint E–2–82, 1982 | MR

[20] Wang S., “A counterexample to Grunwald's theorem”, Ann. of Math., 49:4 (1948), 1008–1009 | DOI | MR | Zbl