On the structure of the Brauer group of fields
Izvestiya. Mathematics, Tome 27 (1986) no. 1, pp. 141-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of the structure of the Brauer group of an arbitrary field. It is proved that, for any odd prime $p$ different from the characteristic of the field $F$, the subgroup $_q\mathrm{Br}(F)$ of elements of order $q=p^n$ in the Brauer group of $F$ is generated by the images of the cyclic algebras $A_\xi(x,y)$ under the corestriction map $_q\mathrm{Br}(F(\xi_q))\to{_q\mathrm{Br}}(F)$. As a corollary it is shown that $_q\mathrm{Br}(F)$ is generated by elements whose index is bounded by $q^{q/p}$. A representation of the $p$-component $\mathrm{Br}(F)\{p\}$ of the Brauer group by means of generators and relations is obtained, and the specialization homomorphism $\mathrm{Br}(T)\{p\}\to\mathrm{Br}(K)\{p\}$, where $T$ is a local algebra and $K$ is the residue field, is shown to be surjective. Similar results are obtained in the case $p=2$. Bibliography: 20 titles.
@article{IM2_1986_27_1_a7,
     author = {A. S. Merkur'ev},
     title = {On the structure of the {Brauer} group of fields},
     journal = {Izvestiya. Mathematics},
     pages = {141--157},
     year = {1986},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - On the structure of the Brauer group of fields
JO  - Izvestiya. Mathematics
PY  - 1986
SP  - 141
EP  - 157
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
LA  - en
ID  - IM2_1986_27_1_a7
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T On the structure of the Brauer group of fields
%J Izvestiya. Mathematics
%D 1986
%P 141-157
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
%G en
%F IM2_1986_27_1_a7
A. S. Merkur'ev. On the structure of the Brauer group of fields. Izvestiya. Mathematics, Tome 27 (1986) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/

[1] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[2] Kartan A., Eilenberg S., Gomologicheskaya algebra, Inostrannaya literatura, M., 1960 | MR

[3] Kassels D., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[4] Leng S., Algebra, Mir, M., 1968

[5] Merkurev A. S., “O gomomorfizme normennogo vycheta stepeni dva”, Dokl. AN SSSR, 261:3 (1981), 542–547 | MR

[6] Merkurev A. S., Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR

[7] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[8] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[9] Albert A. A., Structure of algebras, Amer. Math. Soc. Coll. Publ, XXIV, 1961 | MR

[10] Auslender M., Brumer A., “Brauer groups of discrete valuation rings”, Nederl. Akad. Wetensch. Proc., ser. A, 71 (1968), 288–296

[11] Auslender M., Goldman O., “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc., 97 (1960), 367–409 | DOI | MR

[12] Bass H., Tate J., “The Milnor ring of a global field”, Lecture Notes. Math., 342, 1973, 349–446 | MR | Zbl

[13] Chase S. U., Harrison D. K., Rosenberg A., “Galois theory and Galois cohomology of commutative rings”, Mem. Amer. Math. Soc., 52 (1968), 1–19 | MR

[14] Draksl P. K., Skew fields, London Math. Soc. Lecture Note Series, 81, Cambridge University Press, 1982

[15] Kato K., “A generalization of local class field theory by using $K$-groups. II”, Journal of the faculty of Science the University of Tokyo, Sec. IA, 27:3 (1980), 603–683 | MR | Zbl

[16] Milne J. S., Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980 | MR | Zbl

[17] Riehm C., “The corestriction of algebraic structures”, Inventiones math., 11 (1970), 73–98 | DOI | MR | Zbl

[18] Saltman D., “Generic Galois extensions and problems in field theory”, Advances in Math., 43 (1982), 250–284 | DOI | MR

[19] Suslin A. A., Torsion in $K_2$ of fields, LOMI preprint E–2–82, 1982 | MR

[20] Wang S., “A counterexample to Grunwald's theorem”, Ann. of Math., 49:4 (1948), 1008–1009 | DOI | MR | Zbl