On the structure of the Brauer group of fields
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 141-157

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the structure of the Brauer group of an arbitrary field. It is proved that, for any odd prime $p$ different from the characteristic of the field $F$, the subgroup $_q\mathrm{Br}(F)$ of elements of order $q=p^n$ in the Brauer group of $F$ is generated by the images of the cyclic algebras $A_\xi(x,y)$ under the corestriction map $_q\mathrm{Br}(F(\xi_q))\to{_q\mathrm{Br}}(F)$. As a corollary it is shown that $_q\mathrm{Br}(F)$ is generated by elements whose index is bounded by $q^{q/p}$. A representation of the $p$-component $\mathrm{Br}(F)\{p\}$ of the Brauer group by means of generators and relations is obtained, and the specialization homomorphism $\mathrm{Br}(T)\{p\}\to\mathrm{Br}(K)\{p\}$, where $T$ is a local algebra and $K$ is the residue field, is shown to be surjective. Similar results are obtained in the case $p=2$. Bibliography: 20 titles.
@article{IM2_1986_27_1_a7,
     author = {A. S. Merkur'ev},
     title = {On the structure of the {Brauer} group of fields},
     journal = {Izvestiya. Mathematics },
     pages = {141--157},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - On the structure of the Brauer group of fields
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 141
EP  - 157
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
LA  - en
ID  - IM2_1986_27_1_a7
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T On the structure of the Brauer group of fields
%J Izvestiya. Mathematics 
%D 1986
%P 141-157
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/
%G en
%F IM2_1986_27_1_a7
A. S. Merkur'ev. On the structure of the Brauer group of fields. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a7/