On systems with regular singularities, and their solutions
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 27-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article two problems are solved. 1. It is shown that there exists an exponential representation for the fundamental matrix of a Pfaffian system on $C^n$ with regular singularities on a reducible algebraic submanifold $L$. 2. Let there be given on an algebraic manifold $X$ a function $f(x)$ of the Nilsson class with branch manifold $L\subset X$. It is shown that in a neighborhood of an ordinary point or of a point of normal intersection of components of $L$ the function $f(x)$ generates a $\mathscr D_X$-module with regular singularities on $L$. Bibliography: 28 titles.
@article{IM2_1986_27_1_a1,
     author = {V. A. Golubeva},
     title = {On systems with regular singularities, and their solutions},
     journal = {Izvestiya. Mathematics },
     pages = {27--38},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/}
}
TY  - JOUR
AU  - V. A. Golubeva
TI  - On systems with regular singularities, and their solutions
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 27
EP  - 38
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/
LA  - en
ID  - IM2_1986_27_1_a1
ER  - 
%0 Journal Article
%A V. A. Golubeva
%T On systems with regular singularities, and their solutions
%J Izvestiya. Mathematics 
%D 1986
%P 27-38
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/
%G en
%F IM2_1986_27_1_a1
V. A. Golubeva. On systems with regular singularities, and their solutions. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/