On systems with regular singularities, and their solutions
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article two problems are solved. 1. It is shown that there exists an exponential representation for the fundamental matrix of a Pfaffian system on $C^n$ with regular singularities on a reducible algebraic submanifold $L$. 2. Let there be given on an algebraic manifold $X$ a function $f(x)$ of the Nilsson class with branch manifold $L\subset X$. It is shown that in a neighborhood of an ordinary point or of a point of normal intersection of components of $L$ the function $f(x)$ generates a $\mathscr D_X$-module with regular singularities on $L$. Bibliography: 28 titles.
@article{IM2_1986_27_1_a1,
     author = {V. A. Golubeva},
     title = {On systems with regular singularities, and their solutions},
     journal = {Izvestiya. Mathematics },
     pages = {27--38},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/}
}
TY  - JOUR
AU  - V. A. Golubeva
TI  - On systems with regular singularities, and their solutions
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 27
EP  - 38
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/
LA  - en
ID  - IM2_1986_27_1_a1
ER  - 
%0 Journal Article
%A V. A. Golubeva
%T On systems with regular singularities, and their solutions
%J Izvestiya. Mathematics 
%D 1986
%P 27-38
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/
%G en
%F IM2_1986_27_1_a1
V. A. Golubeva. On systems with regular singularities, and their solutions. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a1/

[1] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. pure and appl. math., 7 (1954), 649–673 | DOI | MR | Zbl

[2] Feynman R., “An operator calculus having applications in quantum electrodynamics”, Phys. Rev., 84:1 (1951), 108–128 | DOI | MR | Zbl

[3] Chen K. T., “Integration of paths – a faithful representation of paths by noncommutative formal power series”, Trans. Amer. Math. Soc., 89:2 (1959), 395–407 | DOI | Zbl

[4] Klarés B., Sadler Ch., “Systèmes de Pfaff et algèbres de Lie libres d'une singularité polaire normale”, Lecture Notes in Math., 1028, Springer, Berlin, N. Y., Geidelberg, 1983, 163–218 | MR

[5] Leksin V. P., “Lineinye matrichnye uravneniya s nilpotentnoi monodromiei”, Geometricheskie metody v zadachakh analiza i algebry, Yaroslavl, 1978, 121–129 | MR | Zbl

[6] Golubeva V. A., “O vosstanovlenii sistemy Pfaffa tipa Fuksa po obrazuyuschim gruppam monodromii”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 989–998 | MR

[7] Markushevich A. I., Teoriya analiticheskikh funktsii, Gostekhizdat, M., 1959

[8] Nilsson N., “Some growth and ramification properties of certain integrals on algebraic manifolds”, Arkiv för Math., 5:32 (1963–1965), 463–476 | MR

[9] Björk J. E., Rings of differential operators, North-Holland Math. Library, 21, Amsterdam, 1979 | MR | Zbl

[10] Golubeva V. A., “Nekotorye voprosy analiticheskoi teorii feinmanovskikh integralov”, Uspekhi matem. nauk, XXXI:2 (1976), 135–202 | MR

[11] Golubeva V. A., “O fuksovykh sistemakh differentsialnykh uravnenii na kompleksnom proektivnom prostranstve”, Differentsialnye uravneniya, XIII:9 (1977), 1570–1580 | MR

[12] Golubeva V. A., “Gipergeometricheskie funktsii dvukh peremennykh Appelya i Kampe de Fere”, Sib. matem. zh., XX:5 (1979), 997–1014 | MR

[13] Golubeva V. A., Enolskii V. Z., “O differentsialnykh uravneniyakh dlya feinmanovskoi amplitudy odnopetlevogo grafa”, Matem. zametki, 23:1 (1978), 113–119 | MR | Zbl

[14] Golubeva V. A., “Sistema Pfaffa tipa Fuksa dlya feinmanovskogo integrala odnopetlevoi diagrammy”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1982, 82–85 | MR | Zbl

[15] Bolibrukh A. A., “O fundamentalnoi matritse sistemy Pfaffa tipa Fuksa”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1084–1109 | MR | Zbl

[16] Van den Essen A., “Systémes fuchsiens d'équations aux dérivées partielles associés aux fonctions de classes de Nilsson et application aux integrates de Feynman”, C. R. Acad. Sci. Paris, 189:2 (1979), 103–105 | MR

[17] Van den Essen A., “Fuchsian systems of linear differential equations associated to Nilsson class functions and application to Feynman integrals”, Lecture Notes in Physics, 126, Springer, Berlin, N. Y., Geidelberg, 1980, 117–122 | MR

[18] Gérard R., “Théorie de Fuchs sur une varieté complexe”, J. Math. Pure et Appl., 47 (1968), 321–404 | MR | Zbl

[19] Deligne P., Equations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer, Berlin, N. Y., Geidelberg, 1970 | MR | Zbl

[20] Kashiwara M., Kawai T., “On the holonomic systems of linear differential equations (systems with regular singularities). III”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 17:3 (1981), 813–979 | DOI | MR | Zbl

[21] Ramis J. P., Géométrie analytique et géometrie algébrique (Variations sur le thème “GAGA”), Lecture Notes in Math., 694, Springer, Berlin, N. Y., Geidelberg, 1978 | MR

[22] Mebkhout Z., The Poincare–Serre–Verdier duality, Lecture Notes in Math., 732, Springer, Berlin, N. Y., Geidelberg, 1979 | MR

[23] Mebkhout Z., Sur le problème de Hilbeert–Rieman, Lecture Notes in Phys., 126, Springer, Berlin, N. Y., Geidelberg, 1979 | MR

[24] Yoshida M., Takano K., “On a linear system of Pfaffian Equations with regular singular points”, Funkcialaj Ekvacioj, 19 (1978), 175–189 | MR

[25] Appell P., Kampé de Fériet J., Fonctions hypergéométriques et hypersphériques, Gauthier–Villars, Paris, 1926, 434 pp.

[26] Lere Zh., Differentsialnoe i integralnoe ischislenie na kompleksnom analiticheskom mnogooobrazii, Mir, M., 1963

[27] Fam F., Vvedenie v topologicheskoe issledovanie osobennostei Landau, Mir, M., 1970

[28] Enolskii V. Z., Voprosy analiticheskoi teorii feinmanovskoi amplitudy, Kand. dissertatsiya, ITF AN USSR, Kiev, 1975