An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 371-403.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\mathfrak o$ is a maximal order of a totally real algebraic number field $K$; $f(x_1,x_2,x_3)$ is a totally positive quadratic form over $K$; $\mathfrak a$ and $\mathfrak c$ are ideals of the ring $\mathfrak o$; $m\in K$; and $x_1,x_2,x_3\in\mathfrak o$. The author proves an asymptotic formula for the number of solutions of the system $$ f(x_1,x_2,x_3)=m,\quad\text{g.c.d.}(x_1,x_2,x_3)=\mathfrak c,\qquad x_1\equiv b_1,\ x_2\equiv b_2,\ x_3\equiv b_3\pmod{\mathfrak a} $$ in numbers $x_1,x_2,x_3\in\mathfrak o$. The proof is based on a discrete ergodic method. Bibliography: 19 titles.
@article{IM2_1986_26_2_a6,
     author = {Yu. G. Teterin},
     title = {An~asymptotic formula for the number of representations by totally positive ternary quadratic forms},
     journal = {Izvestiya. Mathematics },
     pages = {371--403},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/}
}
TY  - JOUR
AU  - Yu. G. Teterin
TI  - An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 371
EP  - 403
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/
LA  - en
ID  - IM2_1986_26_2_a6
ER  - 
%0 Journal Article
%A Yu. G. Teterin
%T An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
%J Izvestiya. Mathematics 
%D 1986
%P 371-403
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/
%G en
%F IM2_1986_26_2_a6
Yu. G. Teterin. An~asymptotic formula for the number of representations by totally positive ternary quadratic forms. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 371-403. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/

[1] Belova N. N., Malyshev A. V., “Ergodicheskie svoistva tselykh tochek na ellipsoidakh roda $\mathfrak G [\Omega, 1]$”, Zap. nauch. seminarov LOMI, 106, 1981, 17–51 | MR | Zbl

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[3] Venkov B. A., Elementarnaya teoriya chisel, ONTI, M., L., 1937

[4] Vinogradov A. I., “Ob odnoi otsenke kvadratichnykh form, ispolzuemoi v arifmetike”, Vestnik LGU, 1959, no. 19, 60–63 | MR | Zbl

[5] Golovizin V. V., “O predstavlenii tselykh chisel polozhitelno opredelennymi kvadratichnymi formami v vpolne veschestvennykh polyakh algebraicheskikh chisel”, Zap. nauch. seminarov LOMI, 121, 1983, 32–46 | MR | Zbl

[6] Golubeva E. P., “Asimptotika chisla tselykh tochek na nekotorykh ellipsoidakh”, Matem. zametki, 11:6 (1972), 625–634 | MR | Zbl

[7] Linnik Yu. V., Izbrannye trudy. Teoriya chisel. Ergodicheskii metod i $L$-funktsii, Nauka, L., 1979 | MR | Zbl

[8] Malyshev A. V., O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Trudy Mat. in-ta im. V. A. Steklova AN SSSR, 65, 1962, 212 pp. | MR | Zbl

[9] Malyshev A. V., Pachev U. M. O predstavlenii tselykh chisel polozhitelnymi ternarnymi kvadratichnymi formami (novyi variant diskretnogo ergodicheskogo metoda), Zap. nauch. seminarov LOMI, 82, 1979, 33–87 | MR | Zbl

[10] Teterin Yu. G., “O predstavlenii tselykh chisel polozhitelnymi ternarnymi kvadratichnymi formami”, Zap. nauch. seminarov LOMI, 121, 1983, 117–156 | MR | Zbl

[11] Gundlach K.-B., “Über die Darstellung der ganzen Spitzenformen zu den Idealstufen der Hilbertschen Modulgruppe und die Abschätzung ihrer Fourierkoeff izienten”, Acta math., 92 (1954), 309–345 | DOI | MR | Zbl

[12] Hsia J. S., “Representations by spinor genera”, Pacific J. Math., 63:1 (1976), 147–152 | MR | Zbl

[13] Kloosterman H. D., “Theorie der Eisensteinschen Reihen von mehreren Veränderlichen”, Abh. Math. Seminar Hamburg. Univ., 6:3/4 (1928), 163–188 | DOI | Zbl

[14] Kloosterman H. D., “Thetareihen in total-reellen algebraischen Zahlkörpern”, Math. Ann., 103 (1930), 279–299 | DOI | MR | Zbl

[15] Kneser M., “Darstellungmasse indefiniter quadratischer Formen”, Math. Z., 77:2 (1961), 188–194 | DOI | MR | Zbl

[16] Lang S., Algebraic number theory, Addison-Wesley, Reading, 1970 | MR

[17] O'Meara O. T., Introduction to quadratic forms, Springer, Berlin, 1963

[18] Peters M., “Darstellungen durch definite ternäre quadratische Formen”, Acta arithm., 34:1 (1977), 57–80 | MR | Zbl

[19] Siegel C. L., “Über die analytische Theorie der quadratischen Formen. III”, Ann. Math., 38 (1937), 212–291 | DOI | MR | Zbl