An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 371-403

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\mathfrak o$ is a maximal order of a totally real algebraic number field $K$; $f(x_1,x_2,x_3)$ is a totally positive quadratic form over $K$; $\mathfrak a$ and $\mathfrak c$ are ideals of the ring $\mathfrak o$; $m\in K$; and $x_1,x_2,x_3\in\mathfrak o$. The author proves an asymptotic formula for the number of solutions of the system $$ f(x_1,x_2,x_3)=m,\quad\text{g.c.d.}(x_1,x_2,x_3)=\mathfrak c,\qquad x_1\equiv b_1,\ x_2\equiv b_2,\ x_3\equiv b_3\pmod{\mathfrak a} $$ in numbers $x_1,x_2,x_3\in\mathfrak o$. The proof is based on a discrete ergodic method. Bibliography: 19 titles.
@article{IM2_1986_26_2_a6,
     author = {Yu. G. Teterin},
     title = {An~asymptotic formula for the number of representations by totally positive ternary quadratic forms},
     journal = {Izvestiya. Mathematics },
     pages = {371--403},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/}
}
TY  - JOUR
AU  - Yu. G. Teterin
TI  - An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 371
EP  - 403
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/
LA  - en
ID  - IM2_1986_26_2_a6
ER  - 
%0 Journal Article
%A Yu. G. Teterin
%T An~asymptotic formula for the number of representations by totally positive ternary quadratic forms
%J Izvestiya. Mathematics 
%D 1986
%P 371-403
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/
%G en
%F IM2_1986_26_2_a6
Yu. G. Teterin. An~asymptotic formula for the number of representations by totally positive ternary quadratic forms. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 371-403. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a6/