On an estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions
Izvestiya. Mathematics, Tome 26 (1986) no. 2, pp. 347-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper establishes best possible conditions, on the degree of approximation of functions $f(x_1,\dots,x_m)$ in $L_p([0,1]^m)$ ($0$) by rational functions, that guarantee that the function $f$ has a $p$th mean differential of order $\lambda>0$ everywhere except on a set of zero Hausdorff ($m-1+\alpha$) measure ($0\alpha\leqslant1$). Bibliography: 11 titles.
@article{IM2_1986_26_2_a5,
     author = {E. A. Sevast'yanov},
     title = {On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions},
     journal = {Izvestiya. Mathematics},
     pages = {347--369},
     year = {1986},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - On an estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions
JO  - Izvestiya. Mathematics
PY  - 1986
SP  - 347
EP  - 369
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/
LA  - en
ID  - IM2_1986_26_2_a5
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T On an estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions
%J Izvestiya. Mathematics
%D 1986
%P 347-369
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/
%G en
%F IM2_1986_26_2_a5
E. A. Sevast'yanov. On an estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions. Izvestiya. Mathematics, Tome 26 (1986) no. 2, pp. 347-369. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/

[1] Dolzhenko E. P., Danchenko V. I., “Differentsiruemost funktsii neskolkikh peremennykh v zavisimosti ot skorosti ikh priblizhenii ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 41:1 (1977), 182–202 | MR | Zbl

[2] Dolzhenko E. P., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | Zbl

[3] Dolzhenko E. P., “O differentsiruemosti funktsii, dostatochno khorosho priblizhaemykh v khausdorfovoi ili ravnomernoi metrike”, Dokl. AN SSSR, 230:4 (1976), 765–768 | MR | Zbl

[4] Sevastyanov E. A., “Skorost ratsionalnoi approksimatsii funktsii i ikh differentsiruemost”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1410–1416 | MR | Zbl

[5] Sevastyanov E. A., “Ratsionalnaya approksimatsiya i absolyutnaya skhodimost ryadov Fure”, Matem. sb., 107:2 (1978), 227–244 | MR

[6] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[7] Sevastyanov E. A., “Kusochno-monotonnaya approksimatsiya i $\Phi$-variatsii”, Anal. Math., 1:2 (1975), 141–164 | DOI | MR

[8] Sevastyanov E. A., “Nekotorye otsenki proizvodnykh ratsionalnykh funktsii v integralnykh metrikakh”, Matem. zametki, 13:4 (1973), 499–510

[9] Gusman M., Differentsirovanie integralov v $\mathbf R^n$, Mir, M., 1978 | MR

[10] Dolzhenko E. P., “Nekotorye metricheskie svoistva algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 241–252

[11] Rusak V. N., “Sopryazhennye ratsionalnye funktsii i otsenki ikh proizvodnykh”, Izv. AN BSSR, seriya fiz.-matem. nauk, 1969, no. 3, 26–33 | MR | Zbl