On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 347-369
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper establishes best possible conditions, on the degree of approximation of functions $f(x_1,\dots,x_m)$ in $L_p([0,1]^m)$ ($0$) by rational functions, that guarantee that the function $f$ has a $p$th mean differential of order $\lambda>0$ everywhere except on a set of zero Hausdorff ($m-1+\alpha$) measure ($0\alpha\leqslant1$).
Bibliography: 11 titles.
@article{IM2_1986_26_2_a5,
author = {E. A. Sevast'yanov},
title = {On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions},
journal = {Izvestiya. Mathematics },
pages = {347--369},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/}
}
TY - JOUR AU - E. A. Sevast'yanov TI - On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions JO - Izvestiya. Mathematics PY - 1986 SP - 347 EP - 369 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/ LA - en ID - IM2_1986_26_2_a5 ER -
%0 Journal Article %A E. A. Sevast'yanov %T On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions %J Izvestiya. Mathematics %D 1986 %P 347-369 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/ %G en %F IM2_1986_26_2_a5
E. A. Sevast'yanov. On~an~estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 347-369. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a5/