On~the zeros of the function $\zeta(s)$ in the neighborhood of the critical line
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 307-313
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. If $H\geqslant T^a$, where $T>T_0>0$ and $a>27/82$, then for $1/2\sigma\leqslant1$ the estimate
$$
N(\sigma,T+H)-N(\sigma,T)=O\biggl(\frac{H}{\sigma-0.5}\biggr)
$$
holds uniformly in $\sigma$, where $N(\sigma_1,t)$ denotes the number of zeros $s=\sigma+it$, with $\sigma>\sigma_1$ and $0$, of the Riemann zeta-function $\zeta(s)$.
Bibliography: 4 titles.
@article{IM2_1986_26_2_a3,
author = {A. A. Karatsuba},
title = {On~the zeros of the function $\zeta(s)$ in the neighborhood of the critical line},
journal = {Izvestiya. Mathematics },
pages = {307--313},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a3/}
}
A. A. Karatsuba. On~the zeros of the function $\zeta(s)$ in the neighborhood of the critical line. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 307-313. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a3/