Isoperimetric inequalities for multivarifolds
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 289-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper establishes isoperimetric inequalities, in the language of the theory of parametrized multivarifolds, for the class of parametrized multidimensional films in a Euclidean space. Bibliography: 5 titles.
@article{IM2_1986_26_2_a2,
     author = {D\`ao Trong Thi},
     title = {Isoperimetric inequalities for multivarifolds},
     journal = {Izvestiya. Mathematics },
     pages = {289--305},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/}
}
TY  - JOUR
AU  - Dào Trong Thi
TI  - Isoperimetric inequalities for multivarifolds
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 289
EP  - 305
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/
LA  - en
ID  - IM2_1986_26_2_a2
ER  - 
%0 Journal Article
%A Dào Trong Thi
%T Isoperimetric inequalities for multivarifolds
%J Izvestiya. Mathematics 
%D 1986
%P 289-305
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/
%G en
%F IM2_1986_26_2_a2
Dào Trong Thi. Isoperimetric inequalities for multivarifolds. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 289-305. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/

[1] Dao Chong Tkhi, “Multivarifoldy i klassicheskie mnogomernye zadachi Plato”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1031–1065 | MR | Zbl

[2] Fomenko L. T., “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh i ekstraordinarnye teorii gomologii i kogomologii. Chast I”, Trudy seminara po vekt. i tenz. analizu, 17, MGU, M., 1974, 3–176 | MR

[3] Federer H., Fleming W. H., “Normal and integral currents”, Ann. of Math., 72:3 (1960), 458–520 | DOI | MR | Zbl

[4] Almgren F. J., “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of varying topological type and singularity structure”, Ann. of Math., 87:2 (1968), 321–391 | DOI | MR | Zbl

[5] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104:1 (1960), 1–92 | DOI | MR | Zbl