Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1986_26_2_a2, author = {D\`ao Trong Thi}, title = {Isoperimetric inequalities for multivarifolds}, journal = {Izvestiya. Mathematics }, pages = {289--305}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {1986}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/} }
Dào Trong Thi. Isoperimetric inequalities for multivarifolds. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 289-305. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a2/
[1] Dao Chong Tkhi, “Multivarifoldy i klassicheskie mnogomernye zadachi Plato”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1031–1065 | MR | Zbl
[2] Fomenko L. T., “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh i ekstraordinarnye teorii gomologii i kogomologii. Chast I”, Trudy seminara po vekt. i tenz. analizu, 17, MGU, M., 1974, 3–176 | MR
[3] Federer H., Fleming W. H., “Normal and integral currents”, Ann. of Math., 72:3 (1960), 458–520 | DOI | MR | Zbl
[4] Almgren F. J., “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of varying topological type and singularity structure”, Ann. of Math., 87:2 (1968), 321–391 | DOI | MR | Zbl
[5] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104:1 (1960), 1–92 | DOI | MR | Zbl