Explicit construction of class field theory for a~multidimensional local field
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 263-287

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a finite extension of the field of $p$-adic numbers $\mathbf Q_p$ and $k\{\{t\}\}$ the field of Laurent series $\sum_{-\infty}^\infty a_it^i$ for which the $a_i$ are bounded in the norm of $k$ and $a_i\to0$ as $i\to-\infty$. In the $n$-dimensional local field $F=k\{\{t_1\}\}\cdots\{\{t_{n-1}\}\}$ a pairing is given in explicit form between the completed Milnor $k$-functor $K_n^{\mathrm{top}}(F)$ and the multiplicative group $F^*$ with values in the group of $q=p^m$th roots of unity. Bibliography: 14 titles.
@article{IM2_1986_26_2_a1,
     author = {S. V. Vostokov},
     title = {Explicit construction of class field theory for a~multidimensional local field},
     journal = {Izvestiya. Mathematics },
     pages = {263--287},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a1/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - Explicit construction of class field theory for a~multidimensional local field
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 263
EP  - 287
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a1/
LA  - en
ID  - IM2_1986_26_2_a1
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T Explicit construction of class field theory for a~multidimensional local field
%J Izvestiya. Mathematics 
%D 1986
%P 263-287
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a1/
%G en
%F IM2_1986_26_2_a1
S. V. Vostokov. Explicit construction of class field theory for a~multidimensional local field. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 263-287. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a1/