Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1986_26_2_a0, author = {I. L. Bloshanskii}, title = {Two criteria for weak generalized localization for multiple trigonometric {Fourier} series of functions in $L_p$, $p\geqslant1$}, journal = {Izvestiya. Mathematics }, pages = {223--262}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {1986}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/} }
TY - JOUR AU - I. L. Bloshanskii TI - Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$ JO - Izvestiya. Mathematics PY - 1986 SP - 223 EP - 262 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/ LA - en ID - IM2_1986_26_2_a0 ER -
%0 Journal Article %A I. L. Bloshanskii %T Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$ %J Izvestiya. Mathematics %D 1986 %P 223-262 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/ %G en %F IM2_1986_26_2_a0
I. L. Bloshanskii. Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 223-262. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/
[1] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, DAN SSSR, 242:1 (1978), 11–13 | MR
[2] Bloshanskii I. L., “Generalised localisation and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p>1$”, Analysis Math., 7:1 (1981), 3–36 | DOI
[3] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl
[4] Hunt R., “On the convergence of Fourier series”, Ortogonal Expansions and their Continuous Analogues (Proc. Conf. Edwardsville I11., 1967), Southern Illinouis Univ. Press, Carbondale I11., 1968, 235–255 | MR | Zbl
[5] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168
[6] Bloshanskii I. L., “O kriteriyakh slaboi obobschennoi lokalizatsii v $N$-mernom prostranstve”, DAN SSSR, 271:6 (1983), 1294–1298 | MR
[7] Bloshanskii I. L., “Obobschennaya lokalizatsiya dlya kratnykh ryadov Fure i geometriya izmerimykh mnozhestv v $N$-mernom prostranstve”, DAN SSSR, 266:4 (1982), 780–783 | MR
[8] Bloshanskii I. L., “O geometrii mnozhestv v N-mernom prostranstve, na kotorykh spravedliva obobschennaya lokalizatsiya dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p>1$”, Matem. sb., 121:1 (1983), 87–110 | MR
[9] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR
[10] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[11] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl
[12] Bloshanskii I. L., “O skhodimosti dvoinykh ryadov Fure funktsii iz $L_p$, $p>1$”, Matem. zametki, 21:6 (1977), 777–788 | MR
[13] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR