Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 223-262

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function $f$, weak generalized localization almost everywhere holds on the set $E$ ($E$ is an arbitrary set of positive measure $E\subset T^N=[-\pi,\pi]^N$) if the condition $f(x)\in L_p(T^N)$, $p\geqslant1$, $f=0$ on $E$ implies that the indicated series converges almost everywhere on some subset $E_1\subset E$ of positive measure. For a large class of sets $\{E\}$, $E\subset T^N$, a number of propositions are proved showing that weak localization of rectangular sums holds on the set $E$ in the classes $L_p$, $p\geqslant1$, if and only if the set $E$ has certain specific properties. In the course of the proof the precise geometry and structure of the subset $E_1$ of $E$ on which the multiple Fourier series converges almost everywhere to zero are determined. Bibliography: 13 titles.
@article{IM2_1986_26_2_a0,
     author = {I. L. Bloshanskii},
     title = {Two criteria for weak generalized localization for multiple trigonometric {Fourier} series of functions in $L_p$, $p\geqslant1$},
     journal = {Izvestiya. Mathematics },
     pages = {223--262},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 223
EP  - 262
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/
LA  - en
ID  - IM2_1986_26_2_a0
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$
%J Izvestiya. Mathematics 
%D 1986
%P 223-262
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/
%G en
%F IM2_1986_26_2_a0
I. L. Bloshanskii. Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 223-262. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/