Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 223-262
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function $f$, weak generalized localization almost everywhere holds on the set $E$ ($E$ is an arbitrary set of positive measure $E\subset T^N=[-\pi,\pi]^N$) if the condition $f(x)\in L_p(T^N)$, $p\geqslant1$, $f=0$ on $E$ implies that the indicated series converges almost everywhere on some subset $E_1\subset E$ of positive measure. For a large class of sets $\{E\}$, $E\subset T^N$, a number of propositions are proved showing that weak localization of rectangular sums holds on the set $E$ in the classes $L_p$, $p\geqslant1$, if and only if the set $E$ has certain specific properties. In the course of the proof the precise geometry and structure of the subset $E_1$ of $E$ on which the multiple Fourier series converges almost everywhere to zero are determined.
Bibliography: 13 titles.
@article{IM2_1986_26_2_a0,
author = {I. L. Bloshanskii},
title = {Two criteria for weak generalized localization for multiple trigonometric {Fourier} series of functions in $L_p$, $p\geqslant1$},
journal = {Izvestiya. Mathematics },
pages = {223--262},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/}
}
TY - JOUR AU - I. L. Bloshanskii TI - Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$ JO - Izvestiya. Mathematics PY - 1986 SP - 223 EP - 262 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/ LA - en ID - IM2_1986_26_2_a0 ER -
%0 Journal Article %A I. L. Bloshanskii %T Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$ %J Izvestiya. Mathematics %D 1986 %P 223-262 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/ %G en %F IM2_1986_26_2_a0
I. L. Bloshanskii. Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 223-262. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a0/