Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann boundary value problem $$ \varphi^+(t)-a(t)\varphi^-(t)= f(t),\qquad t\in\Gamma, $$ is considered on a simple closed piecewise smooth contour $\Gamma$ in the space $L_p(\Gamma,\omega)$, along with the corresponding singular integral operator $$ A_{a,\Gamma}=P_\Gamma^+-a(t)P_\Gamma^- $$ with a bounded coefficient $a(t)$ bounded away from zero and having finitely many discontinuities of the second kind that are vorticity points of power type. A theory of one-sided invertibility of $A_{a,\Gamma}$ is constructed, the spaces $\operatorname{Ker}A_{a,\Gamma}$ and $\operatorname{Im}A_{a,\Gamma}$ are described, and a construction is given for the inverse operators. Bibliography: 31 titles.
@article{IM2_1986_26_1_a2,
     author = {S. M. Grudskii},
     title = {Singular integral equations and the {Riemann} boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$},
     journal = {Izvestiya. Mathematics },
     pages = {53--76},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/}
}
TY  - JOUR
AU  - S. M. Grudskii
TI  - Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 53
EP  - 76
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/
LA  - en
ID  - IM2_1986_26_1_a2
ER  - 
%0 Journal Article
%A S. M. Grudskii
%T Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
%J Izvestiya. Mathematics 
%D 1986
%P 53-76
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/
%G en
%F IM2_1986_26_1_a2
S. M. Grudskii. Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/

[1] Simonenko I. B., “Kraevaya zadacha Rimana s izmerimymi koeffitsientami”, Dokl. AN SSSR, 135:3 (1960), 538–541 | MR | Zbl

[2] Simonenko I. B., “Nekotorye obschie voprosy teorii kraevoi zadachi Rimana”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1138–1146 | MR | Zbl

[3] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[4] Widom H., “Inversion of Toeplitz matrices. II”, Illinois Journ. Math., 4:1 (1960), 88–99 | MR | Zbl

[5] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[6] Douglas R. G., Banach algebra techniques in operator theory, Academic Press, New York, London, 1972 | MR | Zbl

[7] Sementsul A. A., “O singulyarnykh integralnykh uravneniyakh s koeffitsientami, imeyuschimi razryvy pochti periodicheskogo tipa”, Matematicheskie issledovaniya, t. 6, vyp. 3(21), Kishinev, 1971, 92–114 | Zbl

[8] Sarason D., “Toeplitz operators with semi-almost periodic symbols”, Duke Mathematical. J., 4:2 (1977), 357–364 | DOI | MR

[9] Saginashvili A. I., “Singulyarnye integralnye operatory s polupochti-periodicheskimi razryvami u koeffitsienta”, Soobsch. AN GruzSSR, 95:3 (1979), 541–543 | MR | Zbl

[10] Abrahamce M. B., “The spectrum of a Toeplitz operators with a multiplicativelyperiodic symbol”, J. Funct. Anal., 31:2 (1979), 224–233 | DOI | MR

[11] Power S. C., “Fredholm Toeplitz operators and slow oscillations”, Can. J. Math., 32:5 (1980), 1058–1071 | MR | Zbl

[12] Govorov N. V., “O kraevoi zadache Rimana s beskonechnym indeksom”, Dokl. AN SSSR, 154:6 (1964), 1247–1249 | MR | Zbl

[13] Govorov N. V., “Ob ogranichennykh resheniyakh kraevoi zadachi Rimana s beskonechnym indeksom stepennogo poryadka”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, Resp. nauchn. sb., vyp. 11, 1970, 3–34 | MR | Zbl

[14] Alekna P. Yu., “Neodnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom logarifmicheskogo poryadka $\gamma>1$ dlya poluploskosti”, Litovskii matem. sb., 15:1 (1975), 5–22 | MR | Zbl

[15] Sandrygailo I. E., “Kraevaya zadacha Rimana s beskonechnym indeksom dlya poluploskosti v klasse funktsii vpolne regulyarnogo rosta”, Izv. AN BSSR, ser. fiz.-matem. nauk, 1976, no. 1, 21–24 | MR | Zbl

[16] Alekhno A. G., “O kraevoi zadache Rimana s konechnym chislom tochek zavikhreniya”, Dokl. AN BSSR, 1979, no. 12, 1069–1072 | MR | Zbl

[17] Chibrikova L. I., “Ob odnom osobom sluchae zadachi Rimana na neogranichennom konture. I”, Tr. seminara po kraevym zadacham, 16, Kazan. universitet, 1979, 139–167 | MR | Zbl

[18] Chibrikova L. I., “Ob odnom osobom sluchae zadachi Rimana na neogranichennom konture. II”, Tr. seminara po kraevym zadacham, 16, Kazan. universitet, 1979, 185–201 | MR | Zbl

[19] Dybin V. B., “O singulyarnom integralnom operatore na veschestvennoi osi s pochti periodicheskimi koeffitsientami”, Teoriya funktsii, differentsialnye uravneniya i ikh prilozheniya, Elista, 1976, 98–108 | MR

[20] Grudskii S. M., Dybin V. B., “Kraevaya zadacha Rimana s razryvami pochti periodicheskogo tipa u ee koeffitsienta”, Dokl. AN SSSR, 237:1 (1977), 21–24 | MR | Zbl

[21] Grudskii S. M., Dybin V. B., “Kraevaya zadacha Rimana v prostranstve $L_p(\Gamma,\rho)$ s pochti periodicheskimi razryvami u ee koeffitsienta”, Matem. issledovaniya, vyp. 54, Kishinev, 1980, 36–49 | MR | Zbl

[22] Calderon A. P., “Caushy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74:4 (1977), 1324–1327 | DOI | MR | Zbl

[23] Gordadze E. G., “O singulyarnykh integralakh na gladkikh liniyakh”, Trudy simpoziuma po mekhanike sploshnoi sredy i rodstvennym problemam analiza, 1971, t. 2, Tbilisi, 1974, 74–85 | MR

[24] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 7, 1975, 5–162 | MR

[25] Khaikin M. I., “Isklyuchitelnyi sluchai odnorodnoi zadachi Rimana s konechnym indeksom koeffitsienta”, Izv. vuzov, matematika, 1972, no. 5, 92–103

[26] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR

[27] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IIL, M., 1963

[28] Gakhov F. D., Kraevye zadachi, 3-e izd., pererab. i dop., Nauka, M., 1977 | MR

[29] Grudskii S. M., Kraevaya zadacha Rimana s beskonechnym indeksom v klassakh summiruemykh funktsii, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, Rostov-na-Donu, 1981

[30] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[31] Kokilashvili V. N., Paatashvili V. A., “O razryvnoi zadache lineinogo sopryazheniya i singulyarnykh integralnykh uravneniyakh”, Differents. uravneniya, XVI:9 (1980), 1650–1659 | MR