Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann boundary value problem $$ \varphi^+(t)-a(t)\varphi^-(t)= f(t),\qquad t\in\Gamma, $$ is considered on a simple closed piecewise smooth contour $\Gamma$ in the space $L_p(\Gamma,\omega)$, along with the corresponding singular integral operator $$ A_{a,\Gamma}=P_\Gamma^+-a(t)P_\Gamma^- $$ with a bounded coefficient $a(t)$ bounded away from zero and having finitely many discontinuities of the second kind that are vorticity points of power type. A theory of one-sided invertibility of $A_{a,\Gamma}$ is constructed, the spaces $\operatorname{Ker}A_{a,\Gamma}$ and $\operatorname{Im}A_{a,\Gamma}$ are described, and a construction is given for the inverse operators. Bibliography: 31 titles.
@article{IM2_1986_26_1_a2,
     author = {S. M. Grudskii},
     title = {Singular integral equations and the {Riemann} boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$},
     journal = {Izvestiya. Mathematics },
     pages = {53--76},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/}
}
TY  - JOUR
AU  - S. M. Grudskii
TI  - Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 53
EP  - 76
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/
LA  - en
ID  - IM2_1986_26_1_a2
ER  - 
%0 Journal Article
%A S. M. Grudskii
%T Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
%J Izvestiya. Mathematics 
%D 1986
%P 53-76
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/
%G en
%F IM2_1986_26_1_a2
S. M. Grudskii. Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/