Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76
Voir la notice de l'article provenant de la source Math-Net.Ru
The Riemann boundary value problem
$$
\varphi^+(t)-a(t)\varphi^-(t)= f(t),\qquad t\in\Gamma,
$$
is considered on a simple closed piecewise smooth contour $\Gamma$ in the space $L_p(\Gamma,\omega)$, along with the corresponding singular integral operator
$$
A_{a,\Gamma}=P_\Gamma^+-a(t)P_\Gamma^-
$$
with a bounded coefficient $a(t)$ bounded away from zero and having finitely many discontinuities of the second kind that are vorticity points of power type. A theory of one-sided invertibility of $A_{a,\Gamma}$ is constructed, the spaces $\operatorname{Ker}A_{a,\Gamma}$ and $\operatorname{Im}A_{a,\Gamma}$ are described, and a construction is given for the inverse operators.
Bibliography: 31 titles.
@article{IM2_1986_26_1_a2,
author = {S. M. Grudskii},
title = {Singular integral equations and the {Riemann} boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$},
journal = {Izvestiya. Mathematics },
pages = {53--76},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/}
}
TY - JOUR AU - S. M. Grudskii TI - Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$ JO - Izvestiya. Mathematics PY - 1986 SP - 53 EP - 76 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/ LA - en ID - IM2_1986_26_1_a2 ER -
%0 Journal Article %A S. M. Grudskii %T Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$ %J Izvestiya. Mathematics %D 1986 %P 53-76 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/ %G en %F IM2_1986_26_1_a2
S. M. Grudskii. Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 53-76. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a2/