@article{IM2_1986_26_1_a0,
author = {V. K. Bulitko},
title = {Boolean classes of {Turing} reductions},
journal = {Izvestiya. Mathematics},
pages = {1--29},
year = {1986},
volume = {26},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/}
}
V. K. Bulitko. Boolean classes of Turing reductions. Izvestiya. Mathematics, Tome 26 (1986) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/
[1] Rodzhers X., Teoriya rekursivnykh mnozhestv i effektivnaya vychislimost, Mir, M., 1972
[2] Lachlan A. H., “Some notions of reducibility and productiveness”, Z. math. Logic und Grund. Math., 11 (1966), 17–44 | DOI | MR
[3] Bulitko V. K., “Svodimost lineinymi po Zhegalkinu tablitsami”, Sib. matem. zh., XXI:3 (1980), 23–31 | MR
[4] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1979 | MR | Zbl
[5] Gindikin S. G., Algebra logiki v zadachakh, Nauka, M., 1972
[6] Marandzhyan G. B., “O slabo pozitivnykh stepenyakh mnozhestv minimalnykh indeksov algorifmov”, 1-aya Vsesoyuznaya konferentsiya po matematicheskoi logike. Tezisy dokladov i soobschenii, Kishinev, 1978, 85
[7] Solovev V. D., “$Q$-svodimost i g-g-prostye mnozhestva”, Veroyatnostnye metody i kibernetika, v. 10–11, Kazan, 1974, 121–128 | MR
[8] Odifreddi P., “Strong reducibilities”, Bui. Amer. Math. Soc., 4:1 (1981), 37–86 | DOI | MR | Zbl
[9] Jockush C. G. Jr., “Semirecursive sets and positive reducibility”, Trans. Amer. Math. Soc., 131:2 (1968), 420–436 | DOI | MR
[10] Omanadze R. Sh., “Ob ogranichennoi $Q$-svodimosti”, Soobsch. AN GSSR, 100:1 (1980), 57–60 | MR | Zbl