Boolean classes of Turing reductions
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relation of sub-Turing reducibility is defined for each class of ordered pairs of Boolean functions. Criteria are found for the transitivity and reflexivity of the reducibility relation defined by a class of ordered pairs of Boolean functions. The place of a number of familiar reducibilities in the framework of this classification is indicated. Bibliography: 10 titles.
@article{IM2_1986_26_1_a0,
     author = {V. K. Bulitko},
     title = {Boolean classes of {Turing} reductions},
     journal = {Izvestiya. Mathematics },
     pages = {1--29},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/}
}
TY  - JOUR
AU  - V. K. Bulitko
TI  - Boolean classes of Turing reductions
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 1
EP  - 29
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/
LA  - en
ID  - IM2_1986_26_1_a0
ER  - 
%0 Journal Article
%A V. K. Bulitko
%T Boolean classes of Turing reductions
%J Izvestiya. Mathematics 
%D 1986
%P 1-29
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/
%G en
%F IM2_1986_26_1_a0
V. K. Bulitko. Boolean classes of Turing reductions. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a0/

[1] Rodzhers X., Teoriya rekursivnykh mnozhestv i effektivnaya vychislimost, Mir, M., 1972

[2] Lachlan A. H., “Some notions of reducibility and productiveness”, Z. math. Logic und Grund. Math., 11 (1966), 17–44 | DOI | MR

[3] Bulitko V. K., “Svodimost lineinymi po Zhegalkinu tablitsami”, Sib. matem. zh., XXI:3 (1980), 23–31 | MR

[4] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1979 | MR | Zbl

[5] Gindikin S. G., Algebra logiki v zadachakh, Nauka, M., 1972

[6] Marandzhyan G. B., “O slabo pozitivnykh stepenyakh mnozhestv minimalnykh indeksov algorifmov”, 1-aya Vsesoyuznaya konferentsiya po matematicheskoi logike. Tezisy dokladov i soobschenii, Kishinev, 1978, 85

[7] Solovev V. D., “$Q$-svodimost i g-g-prostye mnozhestva”, Veroyatnostnye metody i kibernetika, v. 10–11, Kazan, 1974, 121–128 | MR

[8] Odifreddi P., “Strong reducibilities”, Bui. Amer. Math. Soc., 4:1 (1981), 37–86 | DOI | MR | Zbl

[9] Jockush C. G. Jr., “Semirecursive sets and positive reducibility”, Trans. Amer. Math. Soc., 131:2 (1968), 420–436 | DOI | MR

[10] Omanadze R. Sh., “Ob ogranichennoi $Q$-svodimosti”, Soobsch. AN GSSR, 100:1 (1980), 57–60 | MR | Zbl