An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572
Voir la notice de l'article provenant de la source Math-Net.Ru
An asymptotic formula is established for the number of representations of a positive integer as a sum of two binary positive definite quadratic forms with integral coefficients, and the arguments of one of these forms are prime.
Bibliography: 14 titles.
@article{IM2_1985_25_3_a7,
author = {V. A. Plaksin},
title = {An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime},
journal = {Izvestiya. Mathematics },
pages = {551--572},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/}
}
TY - JOUR AU - V. A. Plaksin TI - An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime JO - Izvestiya. Mathematics PY - 1985 SP - 551 EP - 572 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/ LA - en ID - IM2_1985_25_3_a7 ER -
%0 Journal Article %A V. A. Plaksin %T An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime %J Izvestiya. Mathematics %D 1985 %P 551-572 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/ %G en %F IM2_1985_25_3_a7
V. A. Plaksin. An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/