An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is established for the number of representations of a positive integer as a sum of two binary positive definite quadratic forms with integral coefficients, and the arguments of one of these forms are prime. Bibliography: 14 titles.
@article{IM2_1985_25_3_a7,
     author = {V. A. Plaksin},
     title = {An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime},
     journal = {Izvestiya. Mathematics },
     pages = {551--572},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 551
EP  - 572
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/
LA  - en
ID  - IM2_1985_25_3_a7
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
%J Izvestiya. Mathematics 
%D 1985
%P 551-572
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/
%G en
%F IM2_1985_25_3_a7
V. A. Plaksin. An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/