An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is established for the number of representations of a positive integer as a sum of two binary positive definite quadratic forms with integral coefficients, and the arguments of one of these forms are prime. Bibliography: 14 titles.
@article{IM2_1985_25_3_a7,
     author = {V. A. Plaksin},
     title = {An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime},
     journal = {Izvestiya. Mathematics },
     pages = {551--572},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 551
EP  - 572
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/
LA  - en
ID  - IM2_1985_25_3_a7
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime
%J Izvestiya. Mathematics 
%D 1985
%P 551-572
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/
%G en
%F IM2_1985_25_3_a7
V. A. Plaksin. An~asymptotic formula for the number of representations of a~natural number by a~pair of quadratic forms, the arguments of one of which are prime. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 551-572. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a7/

[1] Vinogradov I. M., Izbrannye trudy, AN SSSR, M., 1952, 436 pp. | MR | Zbl

[2] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976, 120 pp. | MR

[3] Bredikhin B. M., “Uluchshenie otsenki ostatochnogo chlena v problemakh tipa Khardi–Littlvuda”, Vestnik LGU, ser. mat., mekh., astron., 19:4 (1962), 133–137 | Zbl

[4] Bredikhin B. M., Linnik Yu. V., “Asimptotika i ergodicheskie svoistva reshenii obobschennogo uravneniya Khardi–Littlvuda”, Matem. sbornik, 71:2 (1966), 145–161 | MR | Zbl

[5] Vinogradov A. I., “Obschee uravnenie Khardi–Littlvuda”, Matem. zametki, 1:2 (1967), 189–197 | MR

[6] Kovalchik F. B., “Analogi uravneniya Khardi–Littlvuda”, Zap. nauchnykh seminarov Leningr. otd. matem. in-ta AN SSSR, 116, 1982, 86–95 | MR

[7] Linnik Yu. V., “Dispersiya delitelei i kvadratichnykh form v progressiyakh i nekotorye binarnye additivnye zadachi”, Dokl. AN SSSR, 120:5 (1958), 960–962 | MR | Zbl

[8] Malyshev A. V., O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 65, 1962, 212 pp. | MR | Zbl

[9] Plaksin V. A., “Asimptoticheskaya formula chisla reshenii nelineinogo uravneniya s prostymi chislami”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 321–397 | MR | Zbl

[10] Plaksin V. A., “Predstavlenie chisel summoi chetyrekh kvadratov tselykh chisel, dva iz kotorykh prostye”, Dokl. AN SSSR, 257:5 (1981), 1064–1066 | MR | Zbl

[11] Plaksin V. A., “Asimptoticheskaya formula dlya chisla reshenii odnogo diofantova uravneniya”, Matem. zametki, 32:4 (1982), 443–457 | MR | Zbl

[12] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp. | MR

[13] Hooley C., “On the representation of a number as the sum of two squares and a prime”, Acta Math., 97 (1957), 189–210 | DOI | MR | Zbl

[14] Hooley C., “On Waring's problem for two squares and three cubes”, J. Reine und angew. Math., 328 (1981), 161–207 | MR | Zbl