Foliations connected with the Monge--Amp\`ere equation in Hartogs domains
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 419-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a domain in $\mathbf C^2(z,w)$, and $u$ a solution in $D$ of the equation $(\partial\overline\partial u)^2=0$, where $\partial\overline\partial u\ne0$ in $D$. It is known that, for $u\in C^3(D)$, $D$ is foliated into complex curves on which $u$ is harmonic, and $\partial u/\partial z$ and $\partial u/\partial w$ are holomorphic. We show that if $u=u(|z|,w)$ and $D$ is a complete Hartogs domain with axis of symmetry $z=0$, then such a foliation exists even for $u\in C^2(D)$. Bibliography: 10 titles.
@article{IM2_1985_25_2_a7,
     author = {N. G. Kruzhilin},
     title = {Foliations connected with the {Monge--Amp\`ere} equation in {Hartogs} domains},
     journal = {Izvestiya. Mathematics },
     pages = {419--427},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - Foliations connected with the Monge--Amp\`ere equation in Hartogs domains
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 419
EP  - 427
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/
LA  - en
ID  - IM2_1985_25_2_a7
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T Foliations connected with the Monge--Amp\`ere equation in Hartogs domains
%J Izvestiya. Mathematics 
%D 1985
%P 419-427
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/
%G en
%F IM2_1985_25_2_a7
N. G. Kruzhilin. Foliations connected with the Monge--Amp\`ere equation in Hartogs domains. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 419-427. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/

[1] Bedford E., Kalka M., “Foliations and Complex Monge–Ampere Equations”, Comm. Pure Appl. Math., 30:5 (1977), 543–571 | DOI | MR | Zbl

[2] Bedford E., Burns D., “Holomorphic mapping of Annuli in $\mathbf{C}^n$ and the associated Extremal function”, Ann. Scuola Norm. Super. Pisa, 6:3 (1979), 381–414 | MR | Zbl

[3] Kalina J., Lawrynowicz J., Ligocka E., Skwarczyński M., “On some biholomorphic invariants in the analysis on manifolds”, Lecture Notes in Mathematics, 798, 1980, 224–249 | MR | Zbl

[4] Bedford E., “Extremal plurisubharmonic function for certain domains in $\mathbf{C}^n$”, Indiana Univ. Math. J., 28:4 (1979), 614–626 | DOI | MR

[5] Moriyón R., “Regularity of the Dirichlet Problem for the degenerate complex Monge–Amper Equation”, Comm. Pure Appl. Math., 35:1 (1982), 1–27 | DOI | MR | Zbl

[6] Stoll W., “The characterisation of strictly parabolic manifolds”, Ann. Scuola Norm. Super. Pisa, 7:1 (1980), 87–154 | MR | Zbl

[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 | MR

[8] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[9] Scherbina N. V., “Forma Levi dlya $C^1$-gladkikh giperpoverkhnostei i kompleksnaya struktura na granitse oblastei golomorfnosti”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 874–895 | MR | Zbl

[10] Cegrell U., “Removable singularities for PSH functions and related problems”, Proc. London Math. Soc., 36:3 (1978), 310–336 | DOI | MR | Zbl