Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1985_25_2_a7, author = {N. G. Kruzhilin}, title = {Foliations connected with the {Monge--Amp\`ere} equation in {Hartogs} domains}, journal = {Izvestiya. Mathematics }, pages = {419--427}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {1985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/} }
N. G. Kruzhilin. Foliations connected with the Monge--Amp\`ere equation in Hartogs domains. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 419-427. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a7/
[1] Bedford E., Kalka M., “Foliations and Complex Monge–Ampere Equations”, Comm. Pure Appl. Math., 30:5 (1977), 543–571 | DOI | MR | Zbl
[2] Bedford E., Burns D., “Holomorphic mapping of Annuli in $\mathbf{C}^n$ and the associated Extremal function”, Ann. Scuola Norm. Super. Pisa, 6:3 (1979), 381–414 | MR | Zbl
[3] Kalina J., Lawrynowicz J., Ligocka E., Skwarczyński M., “On some biholomorphic invariants in the analysis on manifolds”, Lecture Notes in Mathematics, 798, 1980, 224–249 | MR | Zbl
[4] Bedford E., “Extremal plurisubharmonic function for certain domains in $\mathbf{C}^n$”, Indiana Univ. Math. J., 28:4 (1979), 614–626 | DOI | MR
[5] Moriyón R., “Regularity of the Dirichlet Problem for the degenerate complex Monge–Amper Equation”, Comm. Pure Appl. Math., 35:1 (1982), 1–27 | DOI | MR | Zbl
[6] Stoll W., “The characterisation of strictly parabolic manifolds”, Ann. Scuola Norm. Super. Pisa, 7:1 (1980), 87–154 | MR | Zbl
[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 | MR
[8] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[9] Scherbina N. V., “Forma Levi dlya $C^1$-gladkikh giperpoverkhnostei i kompleksnaya struktura na granitse oblastei golomorfnosti”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 874–895 | MR | Zbl
[10] Cegrell U., “Removable singularities for PSH functions and related problems”, Proc. London Math. Soc., 36:3 (1978), 310–336 | DOI | MR | Zbl