Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 315-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is studied for constructing a regularized asymptotic expression for the solution of a Cauchy problem in the case of a multiple spectrum. The paper consists of two parts. The first part deals with the case when the operator is similar to a single Jordan cell, and the second with the case when the operator is similar to an operator with several Jordan cells. In both cases the structure matrix does not have degeneracies. The structure of a fundamental system of solutions is presented. Bibliography: 13 titles.
@article{IM2_1985_25_2_a3,
     author = {A. G. Eliseev},
     title = {Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit {operator.~I,~II}},
     journal = {Izvestiya. Mathematics },
     pages = {315--357},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a3/}
}
TY  - JOUR
AU  - A. G. Eliseev
TI  - Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 315
EP  - 357
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a3/
LA  - en
ID  - IM2_1985_25_2_a3
ER  - 
%0 Journal Article
%A A. G. Eliseev
%T Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II
%J Izvestiya. Mathematics 
%D 1985
%P 315-357
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a3/
%G en
%F IM2_1985_25_2_a3
A. G. Eliseev. Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 315-357. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a3/

[1] Territin X. L., “Asimptoticheskoe reshenie differentsialnykh uravnenii”, Matematika, 2:1 (1957), 29–59 | MR

[2] Shkil N. I., Asimptotichni metodi v differentsalnykh rivnyannyakh, Vidavnittstvo “Vischa shkola”, Kiiv, 1971

[3] Trenogii V. A., “Razvitie i prilozhenie asimptoticheskogo metoda Lyusternika–Vishika”, Uspekhi matem. nauk, XXV:4(154) (1970), 123–166

[4] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, MGU, M., 1980 | MR

[5] Feschenko S. F., Shkil N. I., Nikolenko A. D., Asimptoticheskie metody v teorii lineinykh differentsialnykh uravnenii, Naukova dumka, Kiev, 1966 | MR | Zbl

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[8] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[9] Eliseev A. G., Lomov S. A., “Teoriya vozmuschenii v banakhovom prostranstve”, Dokl. AN SSSR, 262:3 (1982), 34–38 | MR

[10] Ryzhikh A. D., “Asimptoticheskoe integrirovanie v banakhovom prostranstve”, Trudy MEI, 499, 1980, 159–161 | MR | Zbl

[11] Tryitzinsky W. J., “Theory of linear differential equations containing a parameter”, Acta Math., 67 (1936), 1–50 | DOI | MR

[12] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917 | Zbl

[13] Moiseev N. N., “Asimptoticheskoe predstavlenie reshenii lineinykh differentsialnykh uravnenii v sluchae kratnykh elementarnykh delitelei”, Dokl. AN SSSR, 170:4 (1962), 780–782 | MR