Degrees of growth of finitely generated groups, and the theory of invariant means
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 259-300

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a negative solution to the problem of Milnor concerning the degrees of growth of groups. The construction also answers a question of Day concerning amenable groups. A number of other results are obtained on residually finite finitely generated infinite 2-groups. Bibliography: 51 titles.
@article{IM2_1985_25_2_a1,
     author = {R. I. Grigorchuk},
     title = {Degrees of growth of finitely generated groups, and the theory of invariant means},
     journal = {Izvestiya. Mathematics },
     pages = {259--300},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a1/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - Degrees of growth of finitely generated groups, and the theory of invariant means
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 259
EP  - 300
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a1/
LA  - en
ID  - IM2_1985_25_2_a1
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T Degrees of growth of finitely generated groups, and the theory of invariant means
%J Izvestiya. Mathematics 
%D 1985
%P 259-300
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a1/
%G en
%F IM2_1985_25_2_a1
R. I. Grigorchuk. Degrees of growth of finitely generated groups, and the theory of invariant means. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 259-300. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a1/