Regular elements in spaces of linear representations of reductive algebraic groups
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof is offered of a differential criterion of regularity for the adjoint representation of a semisimple connected group that does not use the existence of a section in the set of regular elements. Using the ideas of this proof, similar results are obtained for certain linear actions with a Cartan subspace, and, conversely, the existence of a section in the set of regular elements is proved.
Bibliography: 7 titles.
@article{IM2_1985_24_2_a7,
author = {D. I. Panyushev},
title = {Regular elements in spaces of linear representations of reductive algebraic groups},
journal = {Izvestiya. Mathematics },
pages = {383--390},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/}
}
D. I. Panyushev. Regular elements in spaces of linear representations of reductive algebraic groups. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/