Regular elements in spaces of linear representations of reductive algebraic groups
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof is offered of a differential criterion of regularity for the adjoint representation of a semisimple connected group that does not use the existence of a section in the set of regular elements. Using the ideas of this proof, similar results are obtained for certain linear actions with a Cartan subspace, and, conversely, the existence of a section in the set of regular elements is proved. Bibliography: 7 titles.
@article{IM2_1985_24_2_a7,
     author = {D. I. Panyushev},
     title = {Regular elements in spaces of linear representations of reductive algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {383--390},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Regular elements in spaces of linear representations of reductive algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 383
EP  - 390
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/
LA  - en
ID  - IM2_1985_24_2_a7
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Regular elements in spaces of linear representations of reductive algebraic groups
%J Izvestiya. Mathematics 
%D 1985
%P 383-390
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/
%G en
%F IM2_1985_24_2_a7
D. I. Panyushev. Regular elements in spaces of linear representations of reductive algebraic groups. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/