Regular elements in spaces of linear representations of reductive algebraic groups
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof is offered of a differential criterion of regularity for the adjoint representation of a semisimple connected group that does not use the existence of a section in the set of regular elements. Using the ideas of this proof, similar results are obtained for certain linear actions with a Cartan subspace, and, conversely, the existence of a section in the set of regular elements is proved. Bibliography: 7 titles.
@article{IM2_1985_24_2_a7,
     author = {D. I. Panyushev},
     title = {Regular elements in spaces of linear representations of reductive algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {383--390},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Regular elements in spaces of linear representations of reductive algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 383
EP  - 390
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/
LA  - en
ID  - IM2_1985_24_2_a7
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Regular elements in spaces of linear representations of reductive algebraic groups
%J Izvestiya. Mathematics 
%D 1985
%P 383-390
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/
%G en
%F IM2_1985_24_2_a7
D. I. Panyushev. Regular elements in spaces of linear representations of reductive algebraic groups. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a7/

[1] Kostant B., “Lie group representations in polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl

[3] Popov V. L., “Teorema konechnosti dlya predstavlenii so svobodnoi algebroi invariantov”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 347–370 | MR

[4] Luna D., Richardson R. W., “A generalization of the Chevalley restriction theorem”, Duke Math. J., 46:3 (1980), 487–496 | DOI | MR

[5] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl

[6] Panyushev D. I., “O prostranstvakh orbit konechnykh i svyaznykh lineinykh grupp”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 95–99 | MR | Zbl

[7] Slodowy P., Simple singularities and simple algebraic groups, Lecture Notes in Math., 815, Springer, Berlin, 1980 | MR | Zbl