Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 347-382
Voir la notice de l'article provenant de la source Math-Net.Ru
The leading term of the asymptotics of a solution of the nonlinear hyperbolic system
$$
\square u_n=\exp(u_{n+1}-u_n)-\exp(u_n-u_{n-1}),\qquad n=1,2,\dots,N,
$$
for large times is constructed and justified. A version of the method of the inverse problem reducing to the solution of a matrix problem of linear conjugation on the complex plane of the spectral parameter is used to solve this system. The coefficients of the asymptotics of $u_n$ are expressed explicitly in terms of the elements of the Riemann matrix realizing the linear conjugation. A theorem is proved on the approximation of the exact solution by the asymptotics constructed.
Bibliography: 14 titles.
@article{IM2_1985_24_2_a6,
author = {V. Yu. Novokshenov},
title = {Asymptotics as $t\to\infty$ of the solution of the {Cauchy} problem for a~two-dimensional generalization of the {Toda} lattice},
journal = {Izvestiya. Mathematics },
pages = {347--382},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/}
}
TY - JOUR AU - V. Yu. Novokshenov TI - Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice JO - Izvestiya. Mathematics PY - 1985 SP - 347 EP - 382 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/ LA - en ID - IM2_1985_24_2_a6 ER -
%0 Journal Article %A V. Yu. Novokshenov %T Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice %J Izvestiya. Mathematics %D 1985 %P 347-382 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/ %G en %F IM2_1985_24_2_a6
V. Yu. Novokshenov. Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 347-382. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/