Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1985_24_2_a6, author = {V. Yu. Novokshenov}, title = {Asymptotics as $t\to\infty$ of the solution of the {Cauchy} problem for a~two-dimensional generalization of the {Toda} lattice}, journal = {Izvestiya. Mathematics }, pages = {347--382}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {1985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/} }
TY - JOUR AU - V. Yu. Novokshenov TI - Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice JO - Izvestiya. Mathematics PY - 1985 SP - 347 EP - 382 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/ LA - en ID - IM2_1985_24_2_a6 ER -
%0 Journal Article %A V. Yu. Novokshenov %T Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice %J Izvestiya. Mathematics %D 1985 %P 347-382 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/ %G en %F IM2_1985_24_2_a6
V. Yu. Novokshenov. Asymptotics as $t\to\infty$ of the solution of the Cauchy problem for a~two-dimensional generalization of the Toda lattice. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 347-382. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a6/
[1] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR
[2] Zakharov V. E., Manakov S. V., “Asimptoticheskoe povedenie nelineinykh volnovykh sistem, integriruemykh metodom obratnoi zadachi”, ZhETF, 71:1(7) (1976), 203–215 | MR
[3] Novokshenov V. Yu., “Asimptotika pri $t\to\infty$ resheniya zadachi Koshi dlya nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 251:4 (1980), 799–801 | MR
[4] Novokshenov V. Yu., Khabibullin I. T., “Nelineinye differentsialno-raznostnye skhemy, integriruemye metodom obratnoi zadachi rasseyaniya. Asimptotika resheniya pri $t\to\infty$”, Dokl. AN SSSR, 257:3 (1981), 543–547 | MR | Zbl
[5] Buslaev V. S., “Ispolzovanie determinantnogo predstavleniya reshenii uravneniya Kortevega–de Friza dlya issledovaniya ikh asimptoticheskogo povedeniya pri bolshikh vremenakh”, UMN, 36:4 (1981), 217–218
[6] Its A. R., “Asimptotika reshenii nelineinogo uravneniya Shredingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl
[7] Zhiber A. V., Shabat A. B., “Uravneniya Kleina–Gordona s netrivialnoi gruppoi”, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR
[8] Mikhailov A. V., “The reduction problem and the inverse scattering method”, Physica 3D, 1,2 (1981), 73–117
[9] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Tody”, Pisma v ZhETF, 30:7 (1980), 443–447
[10] Shabat A. B., “Obratnaya zadacha rasseyaniya”, Differents. uravneniya, 15 (1979), 1824–1835 | MR
[11] Beitmen G., Erdeii L., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1973, 296 pp.
[12] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR
[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[14] Ablowitz M., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential aquations of $P$-type, II”, J. Math. Phys., 21:5 (1980), 1006–1015 | DOI | MR | Zbl