Weights of simple Lie algebras in the cohomology of algebraic varieties
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 245-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article studies representations of semisimple Lie algebras arising naturally in the $l$-adic cohomology of algebraic varieties defined over global fields. A conjecture is formulated about the restrictions the index of the cohomology space and the Hodge numbers of a variety impose on the weights of a represention. The conjecture is proved for ordinary varieties over function fields. An analog of the conjecture is valid for the rational cohomology of varieties defined over the field of complex numbers. Bibliography: 41 titles.
@article{IM2_1985_24_2_a2,
     author = {Yu. G. Zarhin},
     title = {Weights of simple {Lie} algebras in the cohomology of algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {245--281},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a2/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Weights of simple Lie algebras in the cohomology of algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 245
EP  - 281
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a2/
LA  - en
ID  - IM2_1985_24_2_a2
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Weights of simple Lie algebras in the cohomology of algebraic varieties
%J Izvestiya. Mathematics 
%D 1985
%P 245-281
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a2/
%G en
%F IM2_1985_24_2_a2
Yu. G. Zarhin. Weights of simple Lie algebras in the cohomology of algebraic varieties. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 245-281. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a2/

[1] Burbaki N., Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, gl. 7–8, Mir, M., 1978 | MR

[3] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[4] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[5] Delin P., “Gipoteza Veilya, I”, Uspekhi matem. nauk, 30:5 (1975), 159–190 | MR | Zbl

[6] Delin P., “Teoriya Khodzha, II”, Matematika, 17:5 (1973), 3–56 | MR

[7] Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973 | Zbl

[8] Tet Dzh., “Algebraicheskie klassy kogomologii”, Uspekhi matem. nauk, 20:6 (1965), 27–40 | MR

[9] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[10] Zarkhin Yu. G., “Endomorfizmy abelevykh mnogoobrazii nad polyami konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 272–277 | MR | Zbl

[11] Zarkhin Yu. G., “Kruchenie abelevykh mnogoobrazii v konechnoi kharakteristike”, Matem. zametki, 22:1 (1977), 3–11 | Zbl

[12] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $SL_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[13] Shevalle K., Teoriya grupp Li, t. 2, IL, M., 1958

[14] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[15] Koblits N., $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1982 | MR

[16] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, 1978 | MR | Zbl

[17] Deligne P., “La conjecture de Weil pour les surfaces K3”, Invent. Math., 15:3 (1972), 206–226 | DOI | MR | Zbl

[18] Deligne P., “Varietes de Shimura: interpretation modulaire et technique de construction de modeles canoniques”, Proc. Symp. Pure Math., part 2, 33, 1979, 247–290 | MR | Zbl

[19] Deligne P., “La conjecture de Weil, II”, Inst. Hautes Etudes Sci. Publ. Math., 52 (1981), 138–252 | MR

[20] Deligne P., “Travaux de Griffiths”, Seminaire Bourbaki, 376, 1970, Lect. Notes Math., 180, Springer-Verlag, 1971, 213–237 | MR

[21] Deligne P., “Hodge cycles on abelian varieties”, Notes by J. Milne, Lect. Notes Math., 900, Springer-Verlag, 1982, 9–100 | MR

[22] Katz N., “Nilpotent connection and the monodromy theorems: applications of a result of Turrutin”, Inst. Hautes Etudes Sci. Publ. Math., 39 (1970), 175–232 | DOI | MR | Zbl

[23] Katz N., Messing W., “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math., 23:1 (1974), 73–77 | DOI | MR | Zbl

[24] Kato K., On the result of S. Bloch on Hodge–Tate decomposition, IHES preprint, 1981

[25] Kostant B., “A characterization of the classical groups”, Duke Math. J., 25:1 (1958), 107–123 | DOI | MR | Zbl

[26] Lang S., Abelian varieties, Interscience, New York, 1958 | MR

[27] Mazur B., “Eigenvalues of Frobenius acting on algebraic varieties over finite fields”, Proc. Symp. Pure Math., 29, 1975, 231–261 | MR | Zbl

[28] Saavedra Rivano N., Categories Tannakiennes, Lect. Notes Math., 265, Springer-Verlag, 1972 | MR | Zbl

[29] Sen S., “Lie algebras of Galois groups arising from Hodge–Tate modules”, Ann. of Math. (2), 97:1 (1973), 160–170 | DOI | MR | Zbl

[30] Sen S., “Continuous cohomology and $p$-adic Galois representations”, Invent. Math., 62:1 (1980), 89–116 | DOI | MR | Zbl

[31] Illusie L., “Complexe de deRham–Witt et cohomologie crystalline”, Ann. Sci. Éc. Norm. Sup. (4), 12:4 (1979), 501–661 | MR | Zbl

[32] Springer T. A., “Jordan algebras and algebraic groups”, Ergebn. der Math., 75, Springer-Verlag, 1973 | MR | Zbl

[33] Serre J.-P., “Sur les groupes de Galois attaches aux groupes $p$-divisibles”, Proceedings of the Conference on local fields (Driebergen, 1966), Springer-Verlag, 1967, 118–131 | MR

[34] Serre J.-P., “Representations $l$-adiques”, Kyoto Symposium on Algebraic Number Theory (1976), Japan Society for the Promotion of Science, Tokyo, 1977, 177–193 | MR

[35] Serre J.-P., “Groupes algebriques associe aux modules de Hodge–Tate”, Astérisque, 65, 1979, 155–188 | MR

[36] Milne J., Etale cohomology, Princeton University Press, Princeton, 1980 | MR | Zbl

[37] Zarhin Yu. G., “Abelian varieties, $l$-adic representations and Lie algebras. Rank independence on 1”, Invent. Math., 55:2 (1979), 165–176 | DOI | MR

[38] Fontaine J.-M., “Sur certains types de representations $p$-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti–Tate”, Ann. of Math. (2), 115:3 (1982), 529–577 | DOI | MR | Zbl

[39] Ogus A., “Hodge cycles and crystalline cohomology”, Lect. Notes Math., 900, Springer-Verlag, 1982, 357–414 | MR

[40] Deligne P., “Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales”, Inst. Hautes Études Sci. Publ. Math., 35 (1968), 107–126 | DOI | MR | Zbl

[41] Faltings G., “Endlickheitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl