Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1985_24_1_a3, author = {M. A. Mikhailova}, title = {On~the quotient space modulo the action of a~finite group generated by pseudoreflections}, journal = {Izvestiya. Mathematics }, pages = {99--119}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {1985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/} }
M. A. Mikhailova. On~the quotient space modulo the action of a~finite group generated by pseudoreflections. Izvestiya. Mathematics , Tome 24 (1985) no. 1, pp. 99-119. http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/
[1] Burbaki N., Obschaya topologiya, Nauka, M., 1968 | MR
[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1971 | MR
[3] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl
[4] Maerchik M. A., “Konechnye gruppy, porozhdennye psevdootrazheniyami v chetyrekhmernom evklidovom prostranstve”, Trudy Kirg. gos. universiteta, seriya matem., 11, KGU, Frunze, 1976, 68–72
[5] Mikhailova M. L., “Konechnye imprimitivnye gruppy, porozhdennye psevdootrazheniyami”, Issledovaniya po geometrii i algebre, KGU, Frunze, 1978, 82–93 | MR
[6] Mikhailova M. A., Konechnye privodimye gruppy, porozhdennye psevdootrazheniyami, Dep. No 1248-82
[7] Shvartsman O. V., Ob odnoi arifmeticheskoi diskretnoi gruppe, deistvuyuschei v kompleksnom share, Dep. No 2024-75. RZh Matem., IIA, 655, 1975
[8] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77:4 (1955), 778–782 | DOI | MR | Zbl
[9] Du Val P., Homographies, quaternions and rotations, Oxford, 1964
[10] Huffman W. C., Wales D. B., “Linear groups of degree $n$ containing an element with exactly $n-2$ equal eigenvalues”, Linear and Multilinear Algebra, 3 (1975), 53–59 | DOI | MR | Zbl
[11] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–304 | MR | Zbl
[12] Wales D. B., “Linear groups of degree $n$ containing an involution with two eigenvalies I, II”, J. Algebra, 53 (1978), 58–67 | DOI | MR | Zbl