On~the quotient space modulo the action of a~finite group generated by pseudoreflections
Izvestiya. Mathematics , Tome 24 (1985) no. 1, pp. 99-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the quotient $V/G$, where $G$ is a finite group generated by pseudoreflections in a finite-dimensional real space $V$, is homeomorphic to $V$. Bibliography: 12 titles.
@article{IM2_1985_24_1_a3,
     author = {M. A. Mikhailova},
     title = {On~the quotient space modulo the action of a~finite group generated by pseudoreflections},
     journal = {Izvestiya. Mathematics },
     pages = {99--119},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/}
}
TY  - JOUR
AU  - M. A. Mikhailova
TI  - On~the quotient space modulo the action of a~finite group generated by pseudoreflections
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 99
EP  - 119
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/
LA  - en
ID  - IM2_1985_24_1_a3
ER  - 
%0 Journal Article
%A M. A. Mikhailova
%T On~the quotient space modulo the action of a~finite group generated by pseudoreflections
%J Izvestiya. Mathematics 
%D 1985
%P 99-119
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/
%G en
%F IM2_1985_24_1_a3
M. A. Mikhailova. On~the quotient space modulo the action of a~finite group generated by pseudoreflections. Izvestiya. Mathematics , Tome 24 (1985) no. 1, pp. 99-119. http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a3/

[1] Burbaki N., Obschaya topologiya, Nauka, M., 1968 | MR

[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1971 | MR

[3] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[4] Maerchik M. A., “Konechnye gruppy, porozhdennye psevdootrazheniyami v chetyrekhmernom evklidovom prostranstve”, Trudy Kirg. gos. universiteta, seriya matem., 11, KGU, Frunze, 1976, 68–72

[5] Mikhailova M. L., “Konechnye imprimitivnye gruppy, porozhdennye psevdootrazheniyami”, Issledovaniya po geometrii i algebre, KGU, Frunze, 1978, 82–93 | MR

[6] Mikhailova M. A., Konechnye privodimye gruppy, porozhdennye psevdootrazheniyami, Dep. No 1248-82

[7] Shvartsman O. V., Ob odnoi arifmeticheskoi diskretnoi gruppe, deistvuyuschei v kompleksnom share, Dep. No 2024-75. RZh Matem., IIA, 655, 1975

[8] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77:4 (1955), 778–782 | DOI | MR | Zbl

[9] Du Val P., Homographies, quaternions and rotations, Oxford, 1964

[10] Huffman W. C., Wales D. B., “Linear groups of degree $n$ containing an element with exactly $n-2$ equal eigenvalues”, Linear and Multilinear Algebra, 3 (1975), 53–59 | DOI | MR | Zbl

[11] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–304 | MR | Zbl

[12] Wales D. B., “Linear groups of degree $n$ containing an involution with two eigenvalies I, II”, J. Algebra, 53 (1978), 58–67 | DOI | MR | Zbl