Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 511-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples are constructed of homogeneous spaces $M$ with semisimple groups of motions $G$ for which all $G$-invariant Hamiltonian systems on $T^*M$ are integrable. Particular examples of such include affine symmetric spaces. Bibliography: 11 titles.
@article{IM2_1984_23_3_a5,
     author = {I. V. Mykytyuk},
     title = {Homogeneous spaces with integrable $G$-invariant {Hamiltonian} flows},
     journal = {Izvestiya. Mathematics },
     pages = {511--523},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 511
EP  - 523
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/
LA  - en
ID  - IM2_1984_23_3_a5
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
%J Izvestiya. Mathematics 
%D 1984
%P 511-523
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/
%G en
%F IM2_1984_23_3_a5
I. V. Mykytyuk. Homogeneous spaces with integrable $G$-invariant Hamiltonian flows. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 511-523. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[2] Mischenko A. S., “Integrirovanie geodezicheskikh potokov na simmetricheskikh prostranstvakh”, Matem. zametki, 31:2 (1982), 257–262 | MR | Zbl

[3] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz, 12:2 (1978), 46–56 | MR | Zbl

[4] Kostant B., “The principal three-dimensional subgroup and the Betti numbers of complex simple Lie group”, Amer. J. Math., 81:4 (1959), 973–1032 | DOI | MR | Zbl

[5] Kostant B., “Lie group representation in polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl

[6] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Tr. semin. po vekt. tenz. analizu pri MGU, no. 19, 1979, 3–94 | Zbl

[7] Steinberg R., “Invariants of finite reflection groups”, Canad. J. Math., 12:4 (1960), 616–618 | MR | Zbl

[8] Jacobson N., “Completely reducible Lie algebras of linear transformation”, Proc. Amer. Math. Soc., 2:1 (1951), 105–113 | DOI | MR | Zbl

[9] Koh S. S., “On affine symmetric spaces”, Trans. Amer. Math. Soc., 119:2 (1965), 291–309 | DOI | MR | Zbl

[10] Mikityuk I. V., “Odnorodnye prostranstva s integriruemymi invariantnymi gamiltonovymi potokami”, Dokl. AN SSSR, 265:5 (1982), 1074–1078 | MR | Zbl

[11] Thimm A., “Über die Integrabilität geodätischer Flüsse auf homogenen Räumen”, Bonn. Math. Schr., 1980, no. 127, 1–80 | MR