Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 511-523

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples are constructed of homogeneous spaces $M$ with semisimple groups of motions $G$ for which all $G$-invariant Hamiltonian systems on $T^*M$ are integrable. Particular examples of such include affine symmetric spaces. Bibliography: 11 titles.
@article{IM2_1984_23_3_a5,
     author = {I. V. Mykytyuk},
     title = {Homogeneous spaces with integrable $G$-invariant {Hamiltonian} flows},
     journal = {Izvestiya. Mathematics },
     pages = {511--523},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 511
EP  - 523
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/
LA  - en
ID  - IM2_1984_23_3_a5
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Homogeneous spaces with integrable $G$-invariant Hamiltonian flows
%J Izvestiya. Mathematics 
%D 1984
%P 511-523
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/
%G en
%F IM2_1984_23_3_a5
I. V. Mykytyuk. Homogeneous spaces with integrable $G$-invariant Hamiltonian flows. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 511-523. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a5/