Algebras of invariants of forms that are complete intersections
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 423-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author lists all pairs $(n,r)$ such that the algebra of invariants of $n$-forms of degree $r$ is a complete intersection. Under the assumption $n\geqslant2$ and $r\geqslant3$, the pairs are $(2,3)$, $(2,4)$, $(2,5)$, $(2,6)$, $(3,3)$, $(4,3)$, and only these. Bibliography: 12 titles.
@article{IM2_1984_23_3_a0,
     author = {N. D. Beklemishev},
     title = {Algebras of invariants of forms that are complete intersections},
     journal = {Izvestiya. Mathematics },
     pages = {423--429},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/}
}
TY  - JOUR
AU  - N. D. Beklemishev
TI  - Algebras of invariants of forms that are complete intersections
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 423
EP  - 429
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/
LA  - en
ID  - IM2_1984_23_3_a0
ER  - 
%0 Journal Article
%A N. D. Beklemishev
%T Algebras of invariants of forms that are complete intersections
%J Izvestiya. Mathematics 
%D 1984
%P 423-429
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/
%G en
%F IM2_1984_23_3_a0
N. D. Beklemishev. Algebras of invariants of forms that are complete intersections. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 423-429. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/

[1] Luna D., “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105, Mémoire | MR | Zbl

[2] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[3] Hartshorne R., “Complete intersections and connectedness”, Amer. J. Math., 84 (1962), 497–508 | DOI | MR | Zbl

[4] Lichtenbaum S., Schlessinger M., “The cotangent complex of a morphism”, Trans. Amer. Math. Soc., 128 (1967), 41–70 | DOI | MR | Zbl

[5] Stanley R., “Invariants of finite groups and their applications to combinatorics”, Bull. Amer. Math. Soc., 1:3 (1979), 475–511 | DOI | MR | Zbl

[6] Smoke W., “Dimension and multiplicity of graded algebras”, J. Algebra, 21 (1972), 149–173 | DOI | MR | Zbl

[7] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[8] Luna D., “Adherences d'orbite et invariants”, Invent. Math., 29 (1975), 231–238 | DOI | MR | Zbl

[9] Gordeev N. L., “Ob invariantakh lineinoi gruppy, porozhdennoi matritsami s dvumya needinichnymi sobstvennymi znacheniyami”, Zapiski nauchnykh seminarov LOMI, 114, 1982, 120–130 | MR | Zbl

[10] Shioda T., “On the graded ring of invariants of binary octavics”, Amer. J. Math., 89 (1967), 1022–1046 | DOI | MR | Zbl

[11] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[12] Beklemishev N. D., “Invarianty kubicheskikh form ot chetyrekh peremennykh”, Vestnik MGU, ser. “Matematika, mekhanika”, 1982, no. 2, 42–49 | MR | Zbl