Algebras of invariants of forms that are complete intersections
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 423-429
Voir la notice de l'article provenant de la source Math-Net.Ru
The author lists all pairs $(n,r)$ such that the algebra of invariants of $n$-forms of degree $r$ is a complete intersection. Under the assumption $n\geqslant2$ and $r\geqslant3$, the pairs are $(2,3)$, $(2,4)$, $(2,5)$, $(2,6)$, $(3,3)$, $(4,3)$, and only these.
Bibliography: 12 titles.
@article{IM2_1984_23_3_a0,
author = {N. D. Beklemishev},
title = {Algebras of invariants of forms that are complete intersections},
journal = {Izvestiya. Mathematics },
pages = {423--429},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/}
}
N. D. Beklemishev. Algebras of invariants of forms that are complete intersections. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 423-429. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a0/