Approximation in the mean of classes of differentiable functions by algebraic polynomials
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 353-365

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact values $E_n(W^r_L)_L$ are found for the best approximations in the mean of the function classes $$W^r_L=\{f:f^{(r-1)}\text{ is absolutely continuous, }\|f^{(r)}\|_L\leqslant1\},\qquad r =2,3,\dots,$$ by algebraic polynomials of degree at most $n$ on the interval $[-1,1]$. It is proved that $E_n(W^r_L)_L$ coincides with the uniform norm of the perfect spline $$ \frac1{r!}\biggl[(x+1)^r+2\sum^{n+1}_{i=1}(-1)^i(x-x_i)^r_+\biggr] $$ with nodes $x_i=-\cos\frac{i\pi}{n+2}$. Bibliography: 6 titles.
@article{IM2_1984_23_2_a5,
     author = {V. A. Kofanov},
     title = {Approximation in the mean of classes of differentiable functions by algebraic polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {353--365},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a5/}
}
TY  - JOUR
AU  - V. A. Kofanov
TI  - Approximation in the mean of classes of differentiable functions by algebraic polynomials
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 353
EP  - 365
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a5/
LA  - en
ID  - IM2_1984_23_2_a5
ER  - 
%0 Journal Article
%A V. A. Kofanov
%T Approximation in the mean of classes of differentiable functions by algebraic polynomials
%J Izvestiya. Mathematics 
%D 1984
%P 353-365
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a5/
%G en
%F IM2_1984_23_2_a5
V. A. Kofanov. Approximation in the mean of classes of differentiable functions by algebraic polynomials. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 353-365. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a5/