Pseudodifferential operators and a~canonical operator in general symplectic manifolds
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 277-305
Voir la notice de l'article provenant de la source Math-Net.Ru
A calculus of $h$-pseudodifferential operators with symbols on $\mathfrak X$ is defined modulo $O(h^2)$ on a closed symplectic manifold $(\mathfrak X,\omega)$ under the condition that $[\omega]/(2\pi h)-\varkappa/4 \in H^2(\mathfrak X,\mathbf Z)$. The class $\varkappa\in H^2(\mathfrak X,\mathbf Z)$ is described. On Lagrangian submanifolds $\Lambda\subset\mathfrak X$ a class in $H^1(\Lambda,\mathbf U(1))$ obstructing the definition of a canonical operator on $\Lambda$ is found. It is shown that an analogus calculus of pseudodifferential operators can be constructed with respect to homogeneity from an action of the group $\mathbf R_+$ on $\mathfrak X$.
Bibliography: 22 titles.
@article{IM2_1984_23_2_a3,
author = {M. V. Karasev and V. P. Maslov},
title = {Pseudodifferential operators and a~canonical operator in general symplectic manifolds},
journal = {Izvestiya. Mathematics },
pages = {277--305},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/}
}
TY - JOUR AU - M. V. Karasev AU - V. P. Maslov TI - Pseudodifferential operators and a~canonical operator in general symplectic manifolds JO - Izvestiya. Mathematics PY - 1984 SP - 277 EP - 305 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/ LA - en ID - IM2_1984_23_2_a3 ER -
M. V. Karasev; V. P. Maslov. Pseudodifferential operators and a~canonical operator in general symplectic manifolds. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 277-305. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/