Pseudodifferential operators and a~canonical operator in general symplectic manifolds
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 277-305

Voir la notice de l'article provenant de la source Math-Net.Ru

A calculus of $h$-pseudodifferential operators with symbols on $\mathfrak X$ is defined modulo $O(h^2)$ on a closed symplectic manifold $(\mathfrak X,\omega)$ under the condition that $[\omega]/(2\pi h)-\varkappa/4 \in H^2(\mathfrak X,\mathbf Z)$. The class $\varkappa\in H^2(\mathfrak X,\mathbf Z)$ is described. On Lagrangian submanifolds $\Lambda\subset\mathfrak X$ a class in $H^1(\Lambda,\mathbf U(1))$ obstructing the definition of a canonical operator on $\Lambda$ is found. It is shown that an analogus calculus of pseudodifferential operators can be constructed with respect to homogeneity from an action of the group $\mathbf R_+$ on $\mathfrak X$. Bibliography: 22 titles.
@article{IM2_1984_23_2_a3,
     author = {M. V. Karasev and V. P. Maslov},
     title = {Pseudodifferential operators and a~canonical operator in general symplectic manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {277--305},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - V. P. Maslov
TI  - Pseudodifferential operators and a~canonical operator in general symplectic manifolds
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 277
EP  - 305
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/
LA  - en
ID  - IM2_1984_23_2_a3
ER  - 
%0 Journal Article
%A M. V. Karasev
%A V. P. Maslov
%T Pseudodifferential operators and a~canonical operator in general symplectic manifolds
%J Izvestiya. Mathematics 
%D 1984
%P 277-305
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/
%G en
%F IM2_1984_23_2_a3
M. V. Karasev; V. P. Maslov. Pseudodifferential operators and a~canonical operator in general symplectic manifolds. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 277-305. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a3/