Questions of convergence, duality, and averaging for functionals of the calculus of variations
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 243-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $\Gamma$-convergence is studied for functionals of the calculus of variations (this concept was introduced and studied by Italian mathematicians in the school of De Giorgi), the concept of $\Gamma$-convergence is introduced and studied for dual functionals, and a duality theory is constructed connecting the $\Gamma$-limits of the original and the dual functionals. The problem of integral representation and the averaging problem are considered on the basis of this. Some unsolved problems are formulated. Bibliography: 22 titles.
@article{IM2_1984_23_2_a2,
     author = {V. V. Zhikov},
     title = {Questions of convergence, duality, and averaging for functionals of the calculus of variations},
     journal = {Izvestiya. Mathematics },
     pages = {243--276},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Questions of convergence, duality, and averaging for functionals of the calculus of variations
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 243
EP  - 276
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a2/
LA  - en
ID  - IM2_1984_23_2_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Questions of convergence, duality, and averaging for functionals of the calculus of variations
%J Izvestiya. Mathematics 
%D 1984
%P 243-276
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a2/
%G en
%F IM2_1984_23_2_a2
V. V. Zhikov. Questions of convergence, duality, and averaging for functionals of the calculus of variations. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 243-276. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a2/

[1] De Giorgi E., “Sulla convergenza di alcune successoni di integrali del tipo dell'area”, Rend. Math. Roma, 1975, 277–294 | Zbl

[2] De Giorgi E., Franzoni T., “Su un tipo di convergenza variazionale”, Atti Ace. Naz. Linckei (8), 58:6 (1978), 842–850 | MR

[3] Sbordone C., “Su alcune applicazioni di un tipo di convergenza variazionale”, Ann. Sc. Norm. Supl. Pisa, 2 (1975), 617–638 | MR | Zbl

[4] Marcellini P., Sbordone C., “Sur quelques questions de $G$-convergence et d'homogénéisation non linéare”, C.R. Acad. Sc. Paris, 284 (1977), 535–537 | MR | Zbl

[5] De Giorgi E., “$\Gamma$-convergenza e $G$-convergenza”, Bull. U.M.I., 5:14A (1977), 213–220

[6] Kuratovskii K., Topologiya, t. I, Mir, M., 1966 | MR

[7] Berdichevskii V. L., “Prostranstvennoe osrednenie periodicheskikh struktur”, Dokl. AN SSSR, 222:3 (1975), 565–567 | MR | Zbl

[8] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[11] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, Uspekhi matem. nauk, 34:5 (1979), 65–133 | MR | Zbl

[12] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[13] Danford N., Shvarts Dzh. G., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[14] Morrey Ch., Multiple integrals in the calculus of variations, Springer, Berlin, Heidelberg, New York, 1967 | MR

[15] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland Publ. Comp., 1978 | MR

[16] Bakhvalov N. S., “Osrednenie nelineinykh uravnenii s chastotnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 225:2 (1975), 1469–1473 | Zbl

[17] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya odnogo klassa funktsionalov variatsionnogo ischisleniya”, Dokl. AN SSSR, 267:3 (1982), 524–527 | MR

[18] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[19] Berdichevskii V. L., “Ob odnom variatsionnom printsipe”, Dokl. AN SSSR, 215:6 (1974), 1329–1332 | Zbl

[20] Dykhne A. M., “Provodimost dvumernykh dvukhfaznykh sistem”, ZhETF, 1970, no. 7, 51–56

[21] Kozlov S. M., “Dvoistvennost variatsionnykh zadach na mnogoobrazii”, Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva, Uspekhi matem. nauk, 37:4(226) (1982), 135

[22] Berdichevskii V. L., “Osrednenie sluchainykh struktur”, Zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki, Uspekhi matem. nauk, 37:5(227) (1982), 222