Asymptotics of the behavior of a~strictly pseudoconvex surface along its chains
Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 149-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains estimates for the length of the interval of definition of a normal parameter on a chain for some special surfaces, and a study of the asymptotic behavior of a strictly pseudoconvex surface under displacement of the center of the expansion along a chain. In particular it is shown that the equation giving a surface in circular normal form in a neighborhood of a chain that makes a nonzero angle with the complex tangent plane cannot be continued to any neighborhood of the endpoints of the normal parameter on the chain. Bibliography: 7 titles.
@article{IM2_1984_23_1_a3,
     author = {V. V. Ezhov},
     title = {Asymptotics of the behavior of a~strictly pseudoconvex surface along its chains},
     journal = {Izvestiya. Mathematics },
     pages = {149--170},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a3/}
}
TY  - JOUR
AU  - V. V. Ezhov
TI  - Asymptotics of the behavior of a~strictly pseudoconvex surface along its chains
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 149
EP  - 170
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a3/
LA  - en
ID  - IM2_1984_23_1_a3
ER  - 
%0 Journal Article
%A V. V. Ezhov
%T Asymptotics of the behavior of a~strictly pseudoconvex surface along its chains
%J Izvestiya. Mathematics 
%D 1984
%P 149-170
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a3/
%G en
%F IM2_1984_23_1_a3
V. V. Ezhov. Asymptotics of the behavior of a~strictly pseudoconvex surface along its chains. Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 149-170. http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a3/

[1] Chern S., Moser J., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3,4 (1974), 219–271 | DOI | MR

[2] Vitushkin A. G., “Globalnaya normalizatsiya veschestvenno analiticheskoi poverkhnosti vdol tsepi”, Dokl. AN SSSR, 269:4 (1983), 15–18 | MR | Zbl

[3] Vitushkin A. G., Ezhov V. V., Kruzhilin N. G., “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 270:2 (1983), 17–19 | MR

[4] Burns D., Shnider S., “Spherical hypersurfaces in complex space”, Invent. Math., 33:3 (1976), 223–246 | DOI | MR | Zbl

[5] Beloshapka V. K., “Primer neprodolzhaemogo golomorfnogo preobrazovaniya analiticheskoi giperpoverkhnosti”, Matem. zametki, 32:1 (1982), 121–123 | MR | Zbl

[6] Beloshapka V. K., Vitushkin A. G., “Otsenki radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazhenie analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl

[7] Pinchuk S. I., “O golomorfnykh otobrazheniyakh veschestvenno analiticheskikh giperpoverkhnostei”, Matem. sb., 105(147):4 (1978), 574–593 | MR | Zbl