Logical theories of one-place functions on the set of natural numbers
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 587-618
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the author studies the decision problem for logical languages intended to describe the properties of one-place functions $f$ on the set $\mathbf N$ of natural numbers. For functions $f$ taking a finite number of values a criterion for decidability of the monadic theory of the structure $\langle\mathbf N;\leqslant,f\rangle$ is obtained. For a large class of monotone functions $f$, conditions are found under which the elementary theory of the structure $\langle\mathbf N;\leqslant,f\rangle$ is decidable; corresponding conditions are also found for structures of the form $\langle\mathbf N;+,f\rangle$.
Bibliography: 20 titles.
@article{IM2_1984_22_3_a5,
author = {A. L. Semenov},
title = {Logical theories of one-place functions on the set of natural numbers},
journal = {Izvestiya. Mathematics },
pages = {587--618},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/}
}
A. L. Semenov. Logical theories of one-place functions on the set of natural numbers. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 587-618. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/