Logical theories of one-place functions on the set of natural numbers
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 587-618

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author studies the decision problem for logical languages intended to describe the properties of one-place functions $f$ on the set $\mathbf N$ of natural numbers. For functions $f$ taking a finite number of values a criterion for decidability of the monadic theory of the structure $\langle\mathbf N;\leqslant,f\rangle$ is obtained. For a large class of monotone functions $f$, conditions are found under which the elementary theory of the structure $\langle\mathbf N;\leqslant,f\rangle$ is decidable; corresponding conditions are also found for structures of the form $\langle\mathbf N;+,f\rangle$. Bibliography: 20 titles.
@article{IM2_1984_22_3_a5,
     author = {A. L. Semenov},
     title = {Logical theories of one-place functions on the set of natural numbers},
     journal = {Izvestiya. Mathematics },
     pages = {587--618},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/}
}
TY  - JOUR
AU  - A. L. Semenov
TI  - Logical theories of one-place functions on the set of natural numbers
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 587
EP  - 618
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/
LA  - en
ID  - IM2_1984_22_3_a5
ER  - 
%0 Journal Article
%A A. L. Semenov
%T Logical theories of one-place functions on the set of natural numbers
%J Izvestiya. Mathematics 
%D 1984
%P 587-618
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/
%G en
%F IM2_1984_22_3_a5
A. L. Semenov. Logical theories of one-place functions on the set of natural numbers. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 587-618. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a5/