Syzygies in the theory of invariants
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 507-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is developed for finding all $G$-modules (where $G$ is a connected and simply connected semisimple algebraic group over an algebraically closed field of characteristic zero) whose algebra of invariants has prescribed homological dimension. The main theorem says that the number of such $G$-modules, considered to within isomorphism and addition of a trivial direct summand, is finite. The same result is proved for finite groups $G$. All algebras of invariants of homological dimension $\leqslant10$ of a single binary form are found, as well as all algebras of invariants of a system of binary forms that are hypersurfaces. It is shown that the exceptional simple groups have no irreducible modules with an algebra of invariants of small nonzero homological dimension. Bibliography: 46 titles.
@article{IM2_1984_22_3_a4,
     author = {V. L. Popov},
     title = {Syzygies in the theory of invariants},
     journal = {Izvestiya. Mathematics },
     pages = {507--585},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Syzygies in the theory of invariants
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 507
EP  - 585
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/
LA  - en
ID  - IM2_1984_22_3_a4
ER  - 
%0 Journal Article
%A V. L. Popov
%T Syzygies in the theory of invariants
%J Izvestiya. Mathematics 
%D 1984
%P 507-585
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/
%G en
%F IM2_1984_22_3_a4
V. L. Popov. Syzygies in the theory of invariants. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 507-585. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/

[1] Hilbert D., “Über die Theorie der algebraischen Formen”, Ges. Abh., Springer-Verlag, 1970, 199–257, $11^2$

[2] Shioda T., “On the graded ring of invariants of binary octavics”, Am. J. Math., 89 (1967), 1022–1046 | DOI | MR | Zbl

[3] Lascoux A., “Syzygies des varietes determinantales”, Adv. Math., 30:3 (1978), 202–237 | DOI | MR | Zbl

[4] Shephard G. C., Todd J. A., “Finite unitery reflection groups”, Canad. J. Math., 6 (1954), 274–304 | MR | Zbl

[5] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes algebriques dont l'algebre des invariants est libre”, C.R. Acad. Sci. Paris, 283 (1976), 875–878 | MR | Zbl

[6] Schwarz G. W., “Representations of simple Lie groups with regular rings of invariants”, Inv. Math., 49 (1978), 167–191 | DOI | MR | Zbl

[7] Adamovich O. M., Golovina E. M., “Prostye lineinye gruppy Li, imeyuschie svobodnuyu algebru invariantov”, Voprosy teorii grupp i gomologicheskoi algebry, no. 2, Yaroslavl, 1979, 3–41 | MR | Zbl

[8] Popov V. L., “Teorema konechnosti dlya predstavlenii so svobodnoi algebroi invariantov”, Izv. AN SSSR. Ser. mat., 46:2 (1982), 347–370 | MR

[9] Popov V. L., “Konstruktivnaya teoriya invariantov”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 1100–1120 | MR | Zbl

[10] Hochster M., Roberts J., “Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay”, Adv. Math., 13 (1974), 125–175 | DOI | MR

[11] Serre J.-P., Algèbre locale. Multiplicités, Lect. Notes in Math., 11, 1965 | MR | Zbl

[12] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:1 (1972), 51–62 | Zbl

[13] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:2 (1972), 65–78 | Zbl

[14] Adamovich O. M., “Ravnorazmernye predstavleniya prostykh algebraicheskikh grupp”, Geometricheskie metody v zadachakh algebry i analiza, 2, Yaroslavl, 1980, 120–125 | MR | Zbl

[15] Gordeev P. L., “Ob invariantakh lineinoi gruppy, porozhdennoi matritsami s dvumya needinichnymi sobstvennymi znacheniyami”, Zapiski nauchn. seminarov LOMI, 114, 1982, 120–130 | MR | Zbl

[16] Kac V. G., Watanabe K.-i., “Finite linear groups whose rings of invariants is a complete intersection”, Bull. AMS, 6:2 (1982), 221–223 | DOI | MR | Zbl

[17] Popov V. L., “Predstavleniya so svobodnym modulem kovariantov”, Funkts. analiz i ego prilozh., 10:3 (1976), 91–92 | MR | Zbl

[18] Schwarz G. W., “Representations of simple Lie groups with free module of covariants”, Invent. Math., 50 (1978), 1–12 | DOI | MR | Zbl

[19] Popov V. L., “O klassifikatsii predstavlenii, isklyuchitelnykh v smysle Iguzy”, Funkts. analiz i ego prilozh., 9:4 (1975), 83–84 | MR | Zbl

[20] Kac V. G., “Infinite root systems, representations of graphs ans invariant theory”, Invent. Math., 56 (1980), 57–92 | DOI | MR | Zbl

[21] Luna D., “Slices étales”, Bull. Soc. Math. France, Mém., 33 (1973), 81–105 | MR | Zbl

[22] Salmon G., Legons d'algebre superieure, Gauthier-Villars, 1890 | Zbl

[23] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[24] Grace J. H., Joung A., The algebra of invariants, Univ. Press, Cambridge, 1903 | Zbl

[25] Brion M., “Sur la theorie des invariants”, Publ. Math. de l'univ. Pierre et Marie Curie, no. 45, 1982, 1–92

[26] Burbaki N., Gruppy i algebry Li, gl. IV, V, VI, Mir, M., 1972 | MR | Zbl

[27] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR

[28] Vinberg E. B., Onischak A. L., Seminar po algebraicheskim gruppam i gruppam Li, 1967/68, MGU, M., 1969

[29] Zarisskii O., Samyuel P., Kommutativnaya algebra, IL, M., 1963

[30] Watanabe K.-i., “Certain invariant subrings are Gorenstein, I”, Osaka J. Math., 11 (1974), 1–8 | MR | Zbl

[31] Stanley R. P., “Invariants of finite groups and their application to combinatorics”, Bull. AMS., 1:3 (1979), 475–511 | DOI | MR | Zbl

[32] Popov V. L., “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $SL_2$”, Matem. zametki, 16:6 (1974), 943–950 | Zbl

[33] Popov V. L., “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR, Ser. mat., 34:3 (1970), 523–531

[34] Luna D., “Adherences d'orbite et invariants”, Invent. Math., 29 (1975), 231–238 | DOI | MR | Zbl

[35] Khamfri Dzh., Lineinye algebraicheskie gruppy, Mir, M., 1966

[36] Maklein S., Gomologiya, Mir, M., 1966

[37] Rosenlicht M., “A remark on quotient spaces”, An. Ac. Bras. Cienc, 35 (1963), 487–489 | MR | Zbl

[38] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 36:4 (1972), 749–764 | MR | Zbl

[39] Popov V. L., “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. mat., 38:2 (1974), 294–322 | Zbl

[40] Popov A. M., “Neprivodimye prostye lineinye gruppy Li s konechnymi statsionarnymi podgruppami obschego polozheniya”, Funkts. analiz i ego prilozh., 9:4 (1975), 81–82 | MR | Zbl

[41] Popov A. M., “Neprivodimye poluprostye lineinye gruppy Li s konechnymi statsionarnymi podgruppami obschego polozheniya”, Funkts. analiz i ego prilozh., 12:2 (1978), 91–92 | MR | Zbl

[42] Andreev E. M., Popov V. L., “O statsionarnykh podgruppakh tochek obschego polozheniya v prostranstve predstavleniya poluprostoi gruppy Li”, Funkts. analiz i ego prilozh., 5:4 (1971), 1–8 | MR | Zbl

[43] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $SL_2$”, Izv. AN SSSR. Ser. mat., 37:4 (1973), 792–832 | Zbl

[44] Brouwer A. E., Cohen A. M., The Poincaré series of the polynomials invariant under $SU_2$ in its irreducible representations of degree $\leqslant17$, Report ZW 13479, Math. Centrum, Amsterdam, 1979

[45] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[46] Popov A. M., “Statsionarnye podgruppy obschego polozheniya dlya nekotorykh deistvii prostykh grupp Li”, Funkts. analiz i ego prilozh., 10:3 (1976), 88–90 | MR | Zbl