Syzygies in the theory of invariants
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 507-585

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is developed for finding all $G$-modules (where $G$ is a connected and simply connected semisimple algebraic group over an algebraically closed field of characteristic zero) whose algebra of invariants has prescribed homological dimension. The main theorem says that the number of such $G$-modules, considered to within isomorphism and addition of a trivial direct summand, is finite. The same result is proved for finite groups $G$. All algebras of invariants of homological dimension $\leqslant10$ of a single binary form are found, as well as all algebras of invariants of a system of binary forms that are hypersurfaces. It is shown that the exceptional simple groups have no irreducible modules with an algebra of invariants of small nonzero homological dimension. Bibliography: 46 titles.
@article{IM2_1984_22_3_a4,
     author = {V. L. Popov},
     title = {Syzygies in the theory of invariants},
     journal = {Izvestiya. Mathematics },
     pages = {507--585},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Syzygies in the theory of invariants
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 507
EP  - 585
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/
LA  - en
ID  - IM2_1984_22_3_a4
ER  - 
%0 Journal Article
%A V. L. Popov
%T Syzygies in the theory of invariants
%J Izvestiya. Mathematics 
%D 1984
%P 507-585
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/
%G en
%F IM2_1984_22_3_a4
V. L. Popov. Syzygies in the theory of invariants. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 507-585. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a4/