Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 227-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi(t)$ be an arbitrary function of the type of a second modulus of continuity. It is proved that if $E\subset\mathbf R^1$, $f(x)\colon E\to\mathbf R^1$ is a given function, and \begin{equation} \biggl|f(x_2)-\frac{x_2-x_3}{x_1-x_3}f(x_1)-\frac{x_2-x_1}{x_3-x_1}f(x_3)\biggr| \leqslant2|x_1-x_2|\int_{|x_1-x_2|}^{2|x_1-x_3|}s^{-2}\varphi(s)\,ds \end{equation} for any triple of points $x_1\in E$, $x_3\in E$ and $x_2\in E\cap(x_1,x_3)$, then this function is the trace of some continuous function $\overline f\colon\mathbf R^1\to\mathbf R^1$ for which $\omega_2(\overline f,t)\leqslant A\varphi(t)$, where $A$ is an absolute constant. The function $\overline f$ is constructed by a formula which uses only the values of $\overline f$ on $E$ and the values of $\varphi(t)$. The converse of this assertion, namely, that condition (1) holds for each continuous function $f\colon\mathbf R^1\to\mathbf R^1$ on any set $E\subset \mathbf R^1$, can be verified without difficulty. Bibliography: 7 titles.
@article{IM2_1984_22_2_a2,
     author = {V. K. Dzyadyk and I. A. Shevchuk},
     title = {Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity},
     journal = {Izvestiya. Mathematics },
     pages = {227--245},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a2/}
}
TY  - JOUR
AU  - V. K. Dzyadyk
AU  - I. A. Shevchuk
TI  - Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 227
EP  - 245
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a2/
LA  - en
ID  - IM2_1984_22_2_a2
ER  - 
%0 Journal Article
%A V. K. Dzyadyk
%A I. A. Shevchuk
%T Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity
%J Izvestiya. Mathematics 
%D 1984
%P 227-245
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a2/
%G en
%F IM2_1984_22_2_a2
V. K. Dzyadyk; I. A. Shevchuk. Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 227-245. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a2/

[1] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[2] Dzyadyk V. K., “K teorii priblizheniya funktsii na zamknutykh mnozhestvakh kompleksnoi ploskosti”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 134, 1975, 63–114 | Zbl

[3] Whitney H., “On functions with bounded $n$-th differences”, J. Math. Pures Appl., 36 (1957), 67–95 | MR | Zbl

[4] Marchaud A., “Sur les dérivées et sur les différences des functions de variables réelles”, J. Mathem. Pures et Appl., 6 (1927), 337–425 | Zbl

[5] Dzyadyk V. K., “O priblizhenii funktsii obyknovennymi mnogochlenami na konechnom otrezke veschestvennoi osi”, Izv. AN SSSR. Ser. matem., 22:3 (1958), 337–354 | MR

[6] Bari N. K., Stechkin S. B., “Nailuchshee priblizhenie i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. matem. o-va, 5, 1956, 483–552 | MR

[7] Shevchuk I. A., “Nekotorye zamechaniya o funktsiyakh tipa modulya nepreryvnosti poryadka $k\geqslant2$”, Voprosy teorii priblizheniya funktsii i ee prilozhenii, In-t matem. AN USSR, Kiev, 1976, 194–199