Automorphisms of graphs and a~characterization of lattices
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 379-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

An automorphism $g$ of an undirected connected graph $\Gamma$ is called bounded if for some natural number $c$and an arbitrary vertex $\alpha$ of the graph $\Gamma$ the inequality $d(\alpha,g(\alpha))$. The structure of vertex-transitive groups of bounded automorphisms of locally finite graphs is studied. A characterization of locally finite graphs which admit a vertex-transitive group of bounded automorphisms is obtained. Bibliography: 2 titles.
@article{IM2_1984_22_2_a10,
     author = {V. I. Trofimov},
     title = {Automorphisms of graphs and a~characterization of lattices},
     journal = {Izvestiya. Mathematics },
     pages = {379--391},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a10/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - Automorphisms of graphs and a~characterization of lattices
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 379
EP  - 391
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a10/
LA  - en
ID  - IM2_1984_22_2_a10
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T Automorphisms of graphs and a~characterization of lattices
%J Izvestiya. Mathematics 
%D 1984
%P 379-391
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a10/
%G en
%F IM2_1984_22_2_a10
V. I. Trofimov. Automorphisms of graphs and a~characterization of lattices. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 379-391. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a10/

[1] Schlichting G., “Operationen mit periodischen Stabilisatoren”, Arch. Math., 34 (1980), 97–99 | DOI | MR | Zbl

[2] Neumann B. H., “Groups with finite classes of conjugate elements”, Proc. London Math. Soc., 1 (1951), 178–187 | DOI | MR | Zbl