Boundedly nonhomogeneous elliptic and parabolic equations in a~domain
Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 67-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the Dirichlet problem is studied for equations of the form $0=F(u_{x^ix^j},u_{x^i},u,1,x)$ and also the first boundary value problem for equations of the form $u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x)$, where $F(u_{ij},u_i,u,\beta,x)$ and $F(u_{ij},u_i,u,\beta,t,x)$ are positive homogeneous functions of the first degree in $(u_{ij},u_i,u,\beta)$, convex upwards in $(u_{ij})$, that satisfy a uniform strict ellipticity condition. Under certain smoothness conditions on $F$ and when the second derivatives of $F$ with respect to $(u_{ij},u_i,u,x)$ are bounded above, the $C^{2+\alpha}$ solvability of these problems in smooth domains is proved. In the course of the proof, a priori estimates in $C^{2+\alpha}$ on the boundary are constructed, and convexity and restrictions on the second derivatives of $F$ are not used in the derivation. Bibliography: 13 titles.
@article{IM2_1984_22_1_a3,
     author = {N. V. Krylov},
     title = {Boundedly nonhomogeneous elliptic and parabolic equations in a~domain},
     journal = {Izvestiya. Mathematics },
     pages = {67--97},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a3/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Boundedly nonhomogeneous elliptic and parabolic equations in a~domain
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 67
EP  - 97
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a3/
LA  - en
ID  - IM2_1984_22_1_a3
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Boundedly nonhomogeneous elliptic and parabolic equations in a~domain
%J Izvestiya. Mathematics 
%D 1984
%P 67-97
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a3/
%G en
%F IM2_1984_22_1_a3
N. V. Krylov. Boundedly nonhomogeneous elliptic and parabolic equations in a~domain. Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 67-97. http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a3/

[1] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya”, Izv. AN SSSR. Ser. matem., 1982, no. 3, 487–523 | MR

[2] Evans L. C., “Classical solutions of fully nonlinear, convex second order elliptic equations”, Comm. Pure and Appl. Math., 35:3 (1982), 333–363 | DOI | MR | Zbl

[3] Evans L. C., Classical solutions of the Hamilton–Jacobi–Bellman equation for uniformly elliptic operators, Preprint | MR

[4] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[5] Safonov M. V., “O zadache Dirikhle dlya uravneniya Bellmana v mnogomernoi oblasti”, Dokl. AN SSSR, 253:3 (1980), 535–540 | MR | Zbl

[6] Krylov N. V., “Nekotorye novye rezultaty iz teorii upravlyaemykh diffuzionnykh protsessov”, Matem. sbornik, 109:1 (1979), 146–164 | MR | Zbl

[7] Krylov N. V., “Ob upravlyaemykh diffuzionnykh protsessakh s neogranichennymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 734–759 | MR | Zbl

[8] Krylov N. V., “Ob upravlenii diffuzionnym protsessom do momenta pervogo vykhoda iz oblasti”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1029–1048 | MR | Zbl

[9] Brezis H., Evans L. C., “A variational inequality approach to the Bellman–Dirichlet equation for two elliptic operators”, Arch. Rat. Mech. and Anal., 71:1 (1979), 1–13 | DOI | MR | Zbl

[10] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 161–175 | MR | Zbl

[11] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[12] Serrin J., “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phil. Trans. Royal Soc. London, 264 (1969), 413–496 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl